Recently K. Sato constructed an infinitely divisible probability distribution μ on Rd such that μ is not selfdecomposable but every projection of μ to a lower dimensional space is selfdecomposablc. Let Lm (Rd), 1 ≤ m < ∞, be the Urbanik-Sato type nested subclasses of the class L0 (Rd) of all selfdecomposable distributions on Rd. In this paper, for each 1 ≤ m < ∞, a probability distribution μ with the following properties is constructed: μ belongs to Lm-1 (Rd) ∩ (Lm (Rd))c, but every projection of μ to a lower k-dimensional space belongs to Lm (Rk). It is also shown that Sato's example is not only "non-selfdecomposable" but also "non-semi-selfdecomposable."
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.