The termination problem for semi-Thue systems asks whether all derivations for a given word in a given semi-Thue system are finite, i.e., all derivations terminate after finite number of steps. This problem is known to be undecidable, there is a standard reduction of the halting problem of the Turing machines into termination problem; moreover, one can fix a semi-Thue system and still have the undecidability. In 1996 Sénizergues and the second author gave a construction for a 3-rule semi-Thue system with undecidable termination problem. However, in their construction the words of one of the rules are very long. Using some ideas of Tseijtin we give a construction for a semi-Thue system with low number of short rules having undecidable termination problem. Namely, we construct a semi-Thue system with 24 rules over 8 letter alphabet with rule words of length at most 5, and the termination problem for this semi-Thue system is undecidable. Moreover, this system is universal, that is, it can simulate any semi-Thue system.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the infinite Post Correspondence Problem an instance (h,g) consists of two morphisms h and g, and the problem is to determine whether or not there exists an infinite word a such that h(a) = g(a). In the general case this problem was shown to be undecidable by K. Ruohonen (1985). Recently, it was proved that the infinite PCP is undecidable already when the domain alphabet of the morphisms consists of at least 9 letters. Here we show that the problem is undecidable for instances where the morphisms have a domain of 6 letters, when we restrict to solutions of w-languages of the form Rw where R is a given regular language.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.