Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  selekcja stochastyczna równomierna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Praca przedstawia rezultaty zastosowania algorytmu genetycznego (AG) w problemie identyfikacji parametrów matematycznego modelu tłumika magneto-reologicznego (MR). Identyfikację parametrów prowadzono na podstawie badań eksperymentalnych. Przyjęty matematyczny model tłumika magneto-reologicznego opisywał zachodzące w nim zjawiska, na jego podstawie opracowano model numeryczny tłumika MR. Koncentrowano się na określeniu wpływu zastosowanej selekcji AG na dokładność i czas procesu identyfikacji. Rozważano następujące metody selekcji, tj.: równomierną, turniejową, ruletkę oraz stochastyczną równomierną.
EN
This paper presents the results of genetic algorithm (GA) application in the identification of mathematical model of a magneto-rheological damper parameters. Moreover, identification of model parameters is described and compared with results of direct experiment. Device model was developed as a rheological structure. Set of mathematical equations was used to describe the phenomena occurring in the MR damper. The results of research the influence of selection on process of searching the solution with the use of genetic algorithm were analyzed. One considered following methods of the selection: uniform, tournament, roulette and stochastic uniform. The analysis of selection methods with regard to convergence and accuracy for the process of searching solution and time of numerical calculations was carried out. The genetic algorithm has a stochastic character and so it doesn’t guarantee obtaining optimum solution, but it’s expected, that the best individual (with the least value of function, which was analyzed) will represent solution nearing the optimum one. Because of this character of GA every starting of identification process (runs) gives a bit different results and therefore in investigations usually the best result obtained from ten independent experiments or the average result is given.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.