Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  schemat podział sekretu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Remarks on multivariate extensions of polynomial based secret sharing schemes
100%
EN
We introduce methods that use Gröbner bases for secure secret sharing schemes. The description is based on polynomials in the ring R = K[X1,...,Xl] where identities of the participants and shares of the secret are or are related to ideals in R. Main theoretical results are related to algorithmical reconstruction of a multivariate polynomial from such shares with respect to given access structure, as a generalisation of classical threshold schemes. We apply constructive Chinese remainder theorem in R of Becker and Weispfenning. Introduced ideas find their detailed exposition in our related works.
PL
Wprowadzamy metody wykorzystujące bazy Gröbnera do schematów podziału sekretu. Opis bazuje na wielomianach z pierścienia R = K[X1,...,Xl], gdzie tożsamości użytkowników oraz ich udziały są lub są związane z ideałami w R. Główne teoretyczne rezultaty dotyczą algorytmicznej rekonstrukcji wielomianu wielu zmiennych z takich udziałów zgodnie z zadaną (dowolną) strukturą dostępu, co stanowi uogólnienie klasycznych schematów progowych. W pracy wykorzystujemy konstruktywną wersję Chińskiego twierdzenia o resztach w pierścieniu R pochodzącą od Beckera i Weispfenninga. Wprowadzone idee znajdują swój szczegółowy opis w naszych związanych z tym tematem pracach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.