Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 71

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  scaffolds
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
Porous biomaterials, especially synthetic porous ceramics, are of significant importance in bone tissue engineering, and there has been rapid growth in the medical use of these biomaterials over the last 50 years. The reason is that they are relatively easy to prepare and are available in unlimited supply, unlike the allografts and autografts that are used in clinical practice. Various hydroxyapatite (HAp) scaffolds can be prepared, using various pore-forming techniques and firing temperatures. The firing temperature significantly affects microstructural parameters such as total porosity, pore size, the interconnected pore network, and also the chemical and phase composition. Last but not least, it also affects the mechanical properties of the samples. Knowledge about these factors is therefore essential for designing a sample with the desired controlled microstructure and properties. In this work, uniaxial pressing has been used for preparing HAp disks from nanocrystalline HAp powder, using saccharose as a pore-forming agent. The highest porosity achieved (after partial sintering at 800°C) was in the range of 64.7-70.6%. The firing temperature significantly affects porosity, pore size, grain size and mechanical strength, whereas the dwell time has only a minor effect on these parameters. After firing, XRD confirmed more than 98.4% HAp in all cases. Mercury porosimetry confirmed the presence of nanosized interstitial voids for partially sintered materials and pore throat sizes of approximately 100μm (much smaller than the pore cavities), which is adequate for bone cell penetration and further ingrowth. After firing at 1200°C, the matrix is more or less fully sintered, and nanosized pores are absent or closed. The biological part of the paper summarizes the results from cell-seeding and cultivation experiments to determine the cell adhesion, proliferation, viability, mitochondrial activity and osteogenic cell differentiation on the scaffolds, and thus the biocompatibility and bioactivity of the scaffolds. The highest values for all these parameters, particularly the number of cells, were on HAp fired at 1200°C. The samples fired at 1200°C were prepared with various pore sizes (in the range of 100 - 800μm). We found that pore size has a non-significant effect on cell colonization, whereas the firing temperature has a major influence. All tested HAp samples showed a remarkable ability to adsorb proteins on their surfaces, namely albumin and fibronectin, and to promote cell adhesion. Some cytotoxic activity was observed on the samples fired at 800 and 1000°C. Possible reasons for this cytotoxicity have been discussed. However, it can be concluded that the HAp samples created in this study and fired at 1200°C hold great promise for bone tissue engineering.
EN
The aim of the study was to investigate the influence of internal architecture of 3D printed scaffolds on their mechanical properties. The polycaprolactone scaffolds with four different geometries produced by rapid prototyping were tested in this study. The 3D samples were manufactured with different internal architecture. The scaffolds were plotted using a 330 ym dispensing needle, layer by layer with lay-down pattern of the fibers: 00/450/900, 0P/60°/120°, 00/900/1800 and 00/600/1200 with shifted layers. Scanning electron mic¬roscopy analyses and mechanical properties examinations were performed. The mechanical test showed that the highest Young's modulus was obtained for the samples with 0P/6CP/12CP lay-down pattern, especially after layers shifting. The SEM analyzes didn't show any defects or layers delamination in the scaffolds. All the samples were characterized by appropriate 3D architecture and good layers connections. The obtained results confirmed the hypothesis that scaffolds with 00/60°/120l0 lay-down pattern of the fibers and with shifted layers have the highest mechanically properties of the investigated samples and therefore, show high potential to be used in bone tissue engineering application.
EN
Polymers such as polyethylene terephthalate (PET) have been used for large-caliber vascular prostheses with a relative success but their application is limited in small-caliber grafts. Blood vessel grafts with an internal diameter smaller than 6 mm are prone to fail mainly due to their thrombogenicity and poor haemodynamics. One of the possible solutions of these problems may be reconstruction of the tunica intima and media on the synthetic grafts. For this purpose, special PET foils were prepared. Six-μm thick foils were irradiated by copper ions or fission fragments from a radionuclide etalon source 252Cf and etched by 1M sodium hydroxide to obtain holes of a defined diameter (from 80 to100 nm in foils irradiated by copper ions and from 1.0 to 1.5 μm in foils irradiated by fission fragments) and density (1x106 cm-2 - fission fragments to 5x108 cm-2 – copper ions) (FIG.1). Afterward these materials were seeded with vascular smooth muscle cells (VSMC) derived from the rat aorta, or endothelial cells of the line CPAE. Adhesion, proliferation and viability of the cells were monitored after one, three and seven days. The cell proliferation was evaluated by changes in the cell number in several time intervals and construction of growth curves. Determination of cell viability was based on staining of live cells with calcein emitting green fluorescence, and the dead cells with ethidium bromide emitting red fluorescence. Experiments with the growth of vascular smooth muscle cells and endothelial cells on the PET scaffolds with different pore size showed that endothelial cells prefer pores around 1 μm while VSMC have no preferences concerning the pore size of the polymer scaffolds tested. Although the highest cell population densities were found on the glass coverslips used as control material, the number of cells growing on pristine PET did not differ from the densities on PET foils irradiated by Cu-ions or fission fragments of Cf. The obtained data showed applicability of our improved polymer foils as supporting scaffolds for vascular cells. In the further step, these porous PET membranes could serve as synthetic analogues of internal elastic lamina separating vascular smooth muscle cells and endothelial cells in a newly constructed bioartificial vascular wall.
EN
In order to improve the pore size of the polycapro-lactone (PCL) and polycaprolactone/hydroxyapatite (PCL/HAp) nanofibrous scaffolds, salt-leaching technique together with electrospinning method were applied. Salt particles were incorporated within the polymer nanofibrous matrix and then were leached out to generate some macropores. Microstructure, pore size distribution and average fibre diameter of the scaffold were investigated by scanning electron microscopy and PMI capillary flow porometer. Mechanical properties were determined by means of tensile test. Presence of hydroxyapatite and chemical characterization of the scaffold were done by FTIR analysis.
EN
The aim of the study was to investigate the influence of internal architecture of 3D printed scaffolds on their mechanical properties. The polycaprolactone scaffolds with six different internal architectures fabricated by rapid prototyping method were tested in this study. The scaffolds were plotted using a 330 μm dispensing needle, layer by layer with lay-down pattern of the fibers: 00/150/300; 00/300/600; 00/450/900, 00/600/1200, 00/750/1500 and 00/900/1800. Morphological analyses and mechanical properties examinations were performed. The obtained scaffolds had structures with high open porosity (50-60%) and interconnected pores ranging from 380 to 400 μm. The different lay-down pattern and the angle deposition of successive fiber layers resulted in different internal architecture and pore shape of the constructs, what was confirmed by scanning electron microscopy and microtomography analyzes. The geometries 00/900/1800 and 00/600/1200 were characterized with the most regular shape of pores between all analyzed architectures. The pores for 00/150/300 and 00/300/600 were not regular and arranged as a ladder-like helicoid structures. The lay-down pattern of the fibers affected significantly the mechanical properties of the scaffolds. The Young’s modulus (E) of the scaffolds was increasing with increase of the angle deposition between successive layers. The scaffolds were also subjected to cyclic loading and again geometry and mechanical properties were under investigation. For all type of scaffolds the differences of mechanical properties after dynamic compression have been noticed. The geometries 00/900/1800 and 00/600/1200 exhibited the highest Young’s Modulus after dynamic compression according to the rest of analyzed samples. According to the conducted research there is a clear correlation between internal architecture of polymeric scaffolds and their mechanical properties.
EN
Novel polyurethanes based on synthetic, atactic poly[(R, S)-3-hydroxybutyrate] (a-PHB) and polycaprolactone (PCL) or polyoxytetramethylene (PTMG) diols were synthesized. It was shown that the presence of a-PHB within soft segments reduces crystallinity of PUR. Because of the low melting temperature for polyurethanes with PCL in soft segments, at this stage of work, electrospinning was limited to polyurethanes containing PTMG and a-PHB. Polyurethane containing 80% of PTMG and 20% of a-PHB was electrospun at various parameters from hexafluoro-2-propanole solution, resulting in formation of fibers with the average diameter ca. 2 μm. The fiber diameter decreased with decreasing polymer concentration in a solution and was practically insensitive to the needle-collector distance in the applied range of distances.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.