Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rozkład masy cząsteczkowej
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy scharakteryzowano założenia teoretyczne oraz mechanizm rozdzielania w warunkach chromatografii wykluczania (SEC). Przeanalizowano wady i zalety tej techniki rozdzielania. Przedstawiono przegląd zastosowań obejmujący wykorzystanie SEC w analityce technicznej oraz w preparatyce. SEC w warunkach liofilowych znajduje zastosowanie do rozdzielania mieszanin polimerów t.j. polistyren, polibutadien, poliizopren, poli(dimetylosiloksan), poliamidy(np. nylon 6), poliakrylonitryl, poliolefiny, polialkohol winylowy), polichlorek winylu. W warunkach niewodnych rozdzieleniu ulegają także substancje nisko-, średnio- i wysokocząsteczkowe, takie ropa naftowa, oleje, asfalty, smoły, żywice. Główne zastosowania dla mieszanin substancji niskocząsteczkowych to rozdzielanie sacharydów, tłuszczów (grupowo na TAG, DAG, MAG i WKT), środków powierzchniowo czynnych, dodatków w polimerach, antybiotyków, węglowodorów aromatycznych. W warunkach hydrofilowych rozdzielaniu ulegają bardzo polarne polimery, biopolimery polisacharydy, białka, nukleotydy, czasami także w połączeniach z substancjami chemicznymi o niższej polarności, rozpuszczalnymi w wodzie. W drugiej części pracy opisane zostaną specyficzne zastosowania SEC w rozdzielaniu wielowymiarowym oraz preparatyce.
EN
The paper describe the theoretical basis and the separation mechanism in size exclusion chromatography (SEC). Advantages and disadvantages of the process are highlighted. This work contain a review of applications in technical analytics and preparative separations. SEC in lipophilic conditions is used for separation of polymer mixtures including polystyrene, polybutadiene, polyisoprene, poły (dimethylsiloxane), polyamides (eg. nylon 6), polyacrylonitrile, polyolefins, poły (winyl alcohol), polywinyl chloride. In non-aqueous conditions also other mixtures can be separated including Iow-, medium- and high-molecular components such as crude oil, olls, bitumen, tar, resins. Main applications regarding to low-molecular substances include separations of saccharides, fats (group-type separation as TAG, DAG, MAG and FFA), surfactants, polymer additiwes, antibiotics, aromatic hydrocarbons. In hydrophilic SEC conditions a mixtures containing polar polymers, biopolymers as polysaccharides, proteins, nucleotides sometimes also with connection with other Iow polarlty chemical substances soluble in water. The second part of this paper will include a specific applications of SEC in multidimentional and preparatiwe separations.
2
Content available remote Studies on keratin/cellulose films from cuprammonium solution
80%
EN
This work deals with the preparation and characterisation of keratin/cellulose films prepared by coagulating polymers blends from cuprammonium solution. Films were obtained by blending keratin extracted from wool by m-bisulphite/urea solution and cellulose in several proportions. The molecular weight distributions of extracted and regenerated protein were studied by gel-electrophoresis (SDS-PAGE); the chemical structure and molecular conformation were investigated by FT-IR spectroscopy; the surface morphology of the films was observed by scanning electron microscopy (SEM).
3
Content available remote On some changes in polymer blend topological and molecular structures
80%
EN
A general scheme of a rubber structure was discussed. Using the thermomechanical method (TMA) some changes in the molecular and topological structures of cured filled NR rubbers due to content of polymeric additives (CPE or ENR) were shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve (TMC) as a zone differed from others in thermal expansion properti This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares are not stable, differ in molecular-weight distribution (MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on rubber formulation, the mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what was shown. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compound's heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be in the future one of the essential factors determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.
PL
Omówiono schemat struktury gumy. Stosując metodę analizy termomechanicznej (TMA) pokazano pewne zmiany zachodzące w strukturze molekularnej i topologicznej gumy z kauczuku naturalnego napełnionego sadzą. Do mieszanki gumowej wprowadzono jako modyfikator epoksydowany kauczuk naturalny lub chlorowany polietylen. W przedstawionych badaniach blokami (regionami) topologicznymi nazywano złożone struktury, różniące się rozszerzalnością cieplną, których odbiciem są kolejne strefy krzywej termomechanicznej. Te strefy różnią się temperaturami przejść relaksacyjnych, które odpowiadają temperaturom określonym metodą DMTA podczas badań przy częstotliwości 1 Hz. Uzyskana struktura nie jest stabilna. Bloki różnią się rozkładem mas cząsteczkowych odcinków łańcucha między węzłami sieci. Różnice w dynamice formowania molekularnych i topologicznych struktur wulkanizatu zależą od składu gumy, technologii mieszania i czasu wulkanizacji. Pokazano, że niektóre charakterystyki tych bloków topologicznych korelują z właściwościami mechanicznymi wulkanizatów. Wiadomo, że stan uporządkowania polimeru wpływa na dyfuzję w niej substancji małocząsteczkowych. Z tego powodu występujące w gumie dwa bloki amorficzne będą wpływały na rozmieszczenie składników, co zmienia heterogeniczność mieszanki i wynikające z tego właściwości gumy. Oczekuje się, że badania struktury topologicznej będą w przyszłości należały do tych, które mogą umożliwić dalszą poprawę właściwości materiałów polimerowych z wprowadzonymi do nich modyfikatorami oraz poprawę właściwości materiałów uzyskiwanych w wyniku przetwórstwa zużytej gumy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.