Common approaches for robot navigation use Bayesian filters like particle filters, Kalman filters and their extended forms. We present an alternative and supplementing approach using constraint techniques based on spatial constraints between object positions. This yields several advantages. The robot can choose from a variety of belief functions, and the computational complexity is decreased by efficient algorithms. The paper investigates constraint propagation techniques under the special requirements of navigation tasks. Sensor data are noisy, but a lot of redundancies can be exploited to improve the quality of the result. We introduce two quality measures: The ambiguity measure for constraint sets defines the precision, while inconsistencies are measured by the inconsistency measure. The measures can be used for evaluating the available data and for computing best fitting hypothesis. A constraint propagation algorithm is presented.
Line following robots are applied in numerous applications and the best performance could be obtained if the forward looking camera is applied. Variable light and line conditions influence the line estimation and quality of the robot navigation. Proposed History Dependent Viterbi Algorithm and Viterbi Algorithm are compared. Obtained results using Monte Carlo tests show improved performance of the proposed algorithm for assumed model.
This paper presents a vision-based navigation system for mobile robots. It enables the robot to build a map of its environment, localize efficiently itself without use of any artificial markers or other modifications, and navigate without colliding with obstacles. The Simultaneous Localization And Mapping (SLAM) procedure builds a global representation of the environment based on several size limited local maps built using the approach introduced by Davison [1]. Two methods for global map are presented; the first method consists in transforming each local map into a global frame before to start building a new local map. While in the second method, the global map consists only in a set of robot positions where new local maps are started (i.e. the base references of the local maps). In both methods, the base frame for the global map is the robot position at instant . Based on the estimated map and its global position, the robot can find a path and navigate without colliding with obstacles to reach a goal defined the user. The moving objects in the scene are detected and their motion is estimated using a combination of Gaussian Mixture Model (GMM) background subtraction approach and a Maximum a Posteriori Probability Markov Random Field (MAP-MRF) framework [2]. Experimental results in real scenes are presented to illustrate the effectiveness of the proposed method.
The paper addresses the problem of algorithm synthesis for controlling the motion of an electric powered wheelchair. The aim of the algorithm is to stabilize the wheelchair following a linear path and avoiding obstacles if occurred on its way. The main restriction imposed on the project is the application of simple low-cost sensors. That implies the system to cope with a number of inaccuracies and uncertainties related to the measurements. The goal of this work is to evaluate the possibility of the wheelchair project with a navigation system which aids a disable person to move in a complex and dynamic areas. Exemplary simulations are presented in order to discuss the results obtained.
The growing realization of the benefits to individual students and to state economies, of providing science learners with opportunities to expand their knowledge, skills and experience of knowledge-based technological design has led to seeking instructional strategies to facilitate the transition from traditional school settings to project based learning environments. This paper refers to engaging high school physics and computer-science majors in challenging design projects which seek to activate and implement the often inert formal content knowledge within the context of designing and constructing systems dealing with real world engineering challenges in robotics and electro-optics. In this paper we suggest that visualization of the problem space and guided exploration of its spatial relationships can promote the elicitation of relevant formal knowledge and lead to creative solution design. These methods are described in the context of designing and programming robot navigation and in the context of developing remote distance sensors.
W pracy zaprezentowano metodę sterowania ruchem robota mobilnego w kierunku ruchomego celu, przy założonych ograniczeniach czasowych na realizację zadania. Przedstawiono metodę predykcji stanu ruchomego obiektu oraz algorytm jego śledzenia działający w przypadku niepewnej informacji. Działanie prezentowanych metod zilustrowano przykładami symulacyjnymi.
EN
In this work a method of navigating a robot toward a moving target is discussed. Fast algorithm of prediction as well as the algorithm of tracking the target based on a game theoretical approach are presented in the paper. Results of simulations are presented to prove efficiency of the proposed approach.
The article presents a comprehensive study of a visual-inertial simultaneous localization and mapping (SLAM) algorithm designed for aerial vehicles. The goal of the research is to propose an improvement to the particle filter SLAM system that allows for more accurate and robust navigation of unknown environments. The authors introduce a modification that utilizes a homography matrix decomposition calculated from the camera frame-to-frame relationships. This procedure aims to refine the particle filter proposal distribution of the estimated robot state. In addition, the authors implement a mechanism of calculating a homography matrix from robot displacement, which is utilized to eliminate outliers in the frame-to-frame feature detection procedure. The algorithm is evaluated using simulation and real-world datasets, and the results show that the proposed improvements make the algorithm more accurate and robust. Specifically, the use of homography matrix decomposition allows the algorithm to be more efficient, with a smaller number of particles, without sacrificing accuracy. Furthermore, the incorporation of robot displacement information helps improve the accuracy of the feature detection procedure, leading to more reliable and consistent results. The article concludes with a discussion of the implemented and tested SLAM solution, highlighting its strengths and limitations. Overall, the proposed algorithm is a promising approach for achieving accurate and robust autonomous navigation of unknown environments.
Visual homing enables mobile robots to move towards a previously visited location solely based on panoramic vision sensors. In this paper, a SIFT-based visual homing approach incorporating machine learning is presented. The proposed approach can reduce the impact of inaccurate landmarks on the performance, and generate more precise home direction with simple model. The effectiveness of the proposed approach is verified on both panoramic image databases and actual mobile robot, experimental results reveal that compared to some traditional visual homing methods, the proposed approach exhibits better homing performance and adaptability in both static and dynamic environments.
In this paper, we present an optimization mechanism for two popular landmark-based mobile robot visual homing algorithms (ALV and HiSS), called vector pre-assigned mechanism (VPM). VPM contains two branches, both of which can promote the homing performance effectively. In addition, to make the landmark distribution satisfy the equal distance assumption, a landmark optimization strategy is proposed based on imaging principle of the panoramic vision. Experiments on both panoramic image database and a real mobile robot have confirmed the effectiveness of the proposed methods.
W artykule przedstawiono strukturę rozproszonego systemu nawigacji mobilnych robotów usługowych. System nawigacji jest elementem układu sterowania zaprojektowanego zgodnie z teorią agenta upostaciowionego. Opisano komponenty realizujące usługi nawigacyjne oraz ich rozmieszczenie w wieleagentowej strukturze układu sterowania. Dzięki wykorzystaniu chmury obliczeniowej możliwa jest realizacja złożonych algorytmów lokalizacji robota oraz planowania ścieżki. Proponowany system umożliwia chmurze obliczeniowej jednoczesną obsługę wielu robotów. Złożone usługi mogą być realizowane przez kilka komponentów rozproszonych w różnych agentach systemu. Dzięki ternu możliwy jest dobór algorytmów lub całych usług w zależności zarówno od typu robota, jak i od czujników w jakie jest on wyposażony. Działanie systemu zweryfikowano w zadaniu wykrywania zdarzeń w otoczeniu przy użyciu robota NAO.
EN
This paper presents a navigation system structure for mobile service robots in the agent-based distributed architecture. The proposed navigation system is a part of the RAPP framework, a cloud robotics infrastructure. The RAPP framework is an open-source software platform to support the creation and delivery of robotic applications, which are expected to increase the versatility and utility of robots. All key navigation tasks are defined and divided into separate components. The proper allocation of navigation components, in the four-agent structure of the RAPP infrastructure, enabling high-demanding computations offloading was the main goal of this work. Navigation system components were implemented using ROS framework. Experimental results for the NAO robot executing risks detection task proved the validity of the proposed approach.
Niniejszy referat prezentuje zestaw narzędzi, które powstały w celu wspomagania systemu autonomicznej nawigacji kołowej platformy mobilnej wyposażonej w sensor głębi. Dostępne funkcjonalności dotyczą między innymi konwersji obrazu głębi do postaci dwuwymiarowej we współrzędnych biegunowych, przy czym z mapy głębi usuwane jest podłoże i przeprowadzana jest kompensacja wpływu pochylenia czujnika na zwracane odległości. Dodatkowo, zestaw zawiera narzędzie do wykrywania przeszkód wklęsłych jak schody czy urwiska. Ostatni pakiet oprogramowania służy do estymacji wysokości oraz kąta pochylenia czujnika głębi względem podłoża na podstawie obrazu głębi. Narzędzia zaimplementowano w środowisku ROS i są kompatybilne z czujnikiem Microsoft Kinect.
EN
The paper presents set of tools based depth sensor for navigation system of ReMeDi mobile platform. First of the tools allows to convert a 3D depth image to a 2D scan in polar coordinates, to remove ground plane from the image and to compensate sensor tilt angle. Moreover, paper presents a method of negative obstacles detection based on depth sensor. The method is compatible with standard ROS navigation package. The last tool is used for the depth sensor pose estimation with respect to the ground using the RANSAC algorithm. The tools were implemented in ROS environment and they were tested with Microsoft Kinect sensor.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W pracy przedstawiono problem śledzenia ruchomego celu przez grapę robotów mobilnych. Zaprezentowano metodę sterowania ruchem poszczególnych robotów, wykorzystującą gry macierzowe o sumie niezerowej. Zaprezentowano również strukturę scentralizowanego systemu sterowania w ramach, którego rozważany jest omawiany problem. W pracy przedyskutowano użycie koncepcji równowagi Nasha do rozwiązania modelowanego problemu oraz przedstawiono metodę arbitrażu pozwalającą na wybór pojedynczego rozwiązania, w przypadku gdy istnieją rozwiązania wielokrotne. Przedstawiono również wyniki przeprowadzonych symulacji.
EN
In this paper a problem of tracking a moving target by a team of mobile robots is presented. A method of control of individual team-mates based on non-zero sum, one-stage game in a normal form is proposed. The architecture of the control system, with a real-time planner based on centralized sensory system is presented in the paper. The use of non-cooperative solution concepts like the Nash equilibrium and min-max safety strategy is discussed. An arbiter module is used to provide unique control for individual team-mates, and to ensure "fair" distribution of costs among roots. A results of simulation that was carried out is also presented to show an effectiveness of proposed approach.