Typical monocular localization schemes involve a search for matches between reprojected 3D world points and 2D image features in order to estimate the absolute scale transformation between the camera and the world. Successfully calculating such transformation implies the existence of a good number of 3D points uniformly distributed as reprojected pixels around the image plane. This paper presents a method to control the march of a humanoid robot towards directions that are favorable for visual based localization. To this end, orthogonal diagonalization is performed on the covariance matrices of both sets of 3D world points and their 2D image reprojections. Experiments with the NAO humanoid platform show that our method provides persistence of localization, as the robot tends to walk towards directions that are desirable for successful localization. Additional tests demonstrate how the proposed approach can be incorporated into a control scheme that considers reaching a target position.
This paper introduces a simple and efficient method and its implementation in an FPGA for reducing the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle. The standard quadrature technique is used to obtain four counts in each encoder period. In this work a three-wheeled mobile robot vehicle with one driving-steering wheel and two-fixed rear wheels in-axis, fitted with incremental optical encoders is considered. The CORDIC algorithm has been used for the computation of sine and cosine terms in the update equations. The results presented demonstrate the effectiveness of the technique.
Localization and mapping is essential task in autonomous mobile robotics. There is a number of methods dealing with the task. The method called Potential-Based Scan Matching uses proximity sensor data and does not require the odometry readings for successful localization. The method is resistant towards the noise in proximity sensors. This paper is focused on testing the method in dynamically changing environment. Tests were performed for variable size of obstacles and speed of its motion.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.