Biochar is a known potential for nutrient removal in wastewater. This study focuses on the adsorption of rice-husk biochar to remove nutrients in the form of nitrate, ammonium, and phosphate in the wastewater. Two types of biochar production were used: laboratory-made biochar with variations of pyrolysis temperature and biochar made traditionally by local people. The results showed pyrolysis temperature influence the sorption capacity of nitrate and phosphate. The best nitrate sorption capacity using biochar made with low pyrolysis temperature, whereas the best phosphate sorption capacity using biochar made with high pyrolysis temperature. While the best ammonium sorption capacity by biochar made traditionally. The use of biochar with a coarse form shows nutrient sorption ability that is not inferior to the powder form compared to the other research. The use of coarse biochar forms can be selected if the powder form is impractical for field applications. The utilization of biochar variations can be selected according to the dominant nutrient removal needs in the field.
Arsenic is one of the most harmful pollutants in groundwater. In this paper, the Nepali bio sand filter (BSF) was modified with different bio-adsorbents, and proved to be an efficient method for arsenic removal from groundwater. Three different bio-adsorbents were used to modify the Nepali BSF. Iron nails and biochar BSF, ~96% and ~93% arsenic removal was achieved, within the range of WHO guidelines. In iron nails, BSF and biochar BSF ~15 dm3∙h–1 arsenic content water was treated. In the other two BSFs, rice-husk and banana peel were used, the arsenic removal efficiency was ~83% of both BSFs. Furthermore, the efficiency of rice-husk and banana peel BSFs can be increased by increasing the surface area of the adsorbent or by reducing the flow rate.