Nitrogen fixing bacteria have been used for centuries to improve the fertility of agricultural soils. Since the introduction of inorganic nitrogen (N) fertiliser that provides a reliable boost to crop yields whilst reducing land and labour requirements, the use of biological nitrogen fixation has been in decline. Recently, concerns have been expressed about the sustainability of inorganic N fertiliser application, however, there remain doubts about whether N2 fixing bacteria alone can provide agriculture with sufficient fixed N to feed a burgeoning global population. In this paper we review the current state of our knowledge regarding those diazotrophic bacteria that have a role to play in agriculture. We focus on our current areas of research, particularly, the importance of understanding the classification and mechanism of action of N2 fixing bacteria that are used in agricultural soils. We discuss the applications of N2 fixing bacteria that illustrate their potential to provide sustainable N, particularly focussing on Australian and South American agricultural systems where these bacteria are widely exploited to maintain soil fertility. We also identify problems with the use of bacteria as inoculants, including ineffective inoculation due to poor quality preparation, the use of appropriate isolates and issues with sustainability. We review the outlook for biological N fixation highlighting how molecular biology may enable the expression of N fixation in non-leguminous crops.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In micro-plot experiments growth, nodulation and seed yields of pea, yellow lupine and soybean grown in a soil colonized by high populations of pea and lupine rhizobia and low population of soybean rhizobia as influenced by seed or soil application of rhizobial inoculants were studied. The studied inoculation method had no significant effects on root nodule numbers, plant growth at the flowering stage and on seed yields of pea and yellow lupine in comparison to uninoculated control treatments. In the case of soybean seed and soil inoculation with soybean rhizobia (Bradyrhizobium japonicum) resulted in a significant increase of nodulation intensity, fresh and dry mass of shoots at the flowering stage as well as pod numbers and soybean seed yields at harvest. Soybean grown on plots in which soil was inoculated with the symbiotic bacteria gave seed yield by about 57 % higher as compared to that of soybean grown from seed inoculated with the rhizobia and by 169 % higher than when this crop was grown on the control (uninoculated) plots.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.