Iron is one of the most common components in water that adversely affect humans, other living organisms and parameters of water bodies. Therefore, during using and consuming natural waters, and discharging sewage into surface water bodies, it is necessary to remove iron compounds from the aquatic environment. The use of capillary materials in water purification processes is a promising area of research. Experimental data proved the high efficiency of capillary materials application, providing higher efficiency of iron ions removal from model solutions for real water sources of different origin compared with the traditional method of settling. The main advantage of the application of materials with capillary properties is the simplicity of implementation of the method and there is no need to use electricity and any additional reagents. The effect of various factors on the process of water deironing with the application of capillary materials was studied. It was found out that the density has a little effect on the process at an iron concentration range from 1 to 5 mg/dm3 . The increase in competing ions content intensifies the process of divalent ferrous ions transition to trivalent. During the deironing of artesian water, the degree of iron removal exceeded 90 %, while the residual concentration was below the MPC.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper discusses issues of iron and manganese removal from underground waters in the filtration process. The results of laboratory-scale tests of the process with filtration beds filled with catalytic mass are presented. Problems involved in operating of several underground water treatment stations using said mass in the South-Eastern Poland were also discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.