Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  regular vibrations
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Computer visualization of regular and chaotic vibrations
100%
EN
Aeroelasticity of surface structures in supersonic flow is a domain which involves various linear and nonlinear vibrations, static and dynamic instabilites and limit cycle motions (cf. [1] - [4]). There can appear various types of bifurcations and regular or chaotic motions depending on the value of parameters of the system under investigation [3] -[7] In this paper nonlinear bending vibrations of a plate of finite length and infinite width in supersonic flow are considered under assumption that a in-plane compressing force is acting in the The dynamic pressure difference produced by the motion in gas stream is determined on the of the potential theory of supersonic flow [1], [2]. Finally, we obtain a nonlinear partial integro-equation describing the motion of the under investigation. The solution of this is obtained in the form of a series of eigenfunctions of the self-adjoined boundary-value vibration problem of the same plate In the vacuum. Making use of the Galerkin method we then obtain a set of nonlinear ordinary differential which can be analysed by means of methods. Types of bifurcations occurring in the problem are investigated, limit cycles of self-vibrations and regions of regular and chaotic can be determined.
EN
An airfoil in supersonic flow, having deformable nonlinear supports, is an aeroelastic system for which various types of instability, bifurcations and regular or chaotic motions can appear. The airfoil has three degrees of freedom - that is, plunge displacement, angle of pitch and angle of flap deflection. The stiffness force and moments for all those motions are assumed to be nonlinear ones. The airfoil is subjected to the pressure difference produced by its motion in supersonic flow. Stability and bifurcations occurring in the system, limit cycles of self-excited vibrations and regions of regular or chaotic motions have been investigated. The effect of some parameters of the system on the course of linear and nonlinear vibrations has been studied.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.