Wielowymiarowe modele regresyjne są używane dla celów prognozowania. Parametry takich modeli estymowane są na podstawie zbioru wektorów cech grupujących wartości zmiennych niezależnych oraz wartości zmiennej zależnej. W wielu ważnych zastosowaniach dokładne wartości zmiennej zależnej nie mogą być określone a znane są tylko przedziały, które zawierają te wartości. W takich przypadkach stosuje się metody regresji przedziałowej. W pracy opisana jest konstrukcja liniowych modeli regresyjnych oparta na minimalizacji wypukłych i odcinkowo liniowych funkcji kryterialnych (typu CPL), które są zdefiniowane na przedziałowych zbiorach uczących.
EN
Multivariate regression models are used for the prognosis purposes. Parameters of such models are estimated on the basis of feature vectors (independent variables) combined with values of response (target) variable. The exact values of response variable can be not determined exactly in some important applications. For example, the values of response variable can be censored and given as intervals. The interval regression approach has been proposed for designing prognostic tools in such circumstances. The possibility of using the convex and piecewise linear (CPL) functions for designing interval regression models is examined in the paper.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Regression models of censored survival data are often required to handle the cases, where information on the dependent (response) variable is only available as intervals, within which the actual values are located. We report on implementation and some preliminary tests of a new general method for regression with an interval-censored response variable. This method is based on minimization of a convex piecewise-linear (CPL) criterion function introduced earlier for perceptron-type classifier design. The presented interval regression method (CPL- IR) can handle arbitrary pattern of exact and left-, right-, or interval-censored data in one flexible computational framework.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.