Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  regresja liniowa wielokrotna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, smog and poor air quality have become a growing environmental problem. There is a need to continuously monitor the quality of the air. The lack of selectivity is one of the most important problems limiting the use of gas sensors for this purpose. In this study, the selectivity of six amperometric gas sensors is investigated. First, the sensors were calibrated in order to find a correlation between the concentration level and sensor output. Afterwards, the responses of each sensor to single or multicomponent gas mixtures with concentrations from 50 ppb to 1 ppm were measured. The sensors were studied under controlled conditions, a constant gas flow rate of 100 mL/min and 50 % relative humidity. Single Gas Sensor Response Interpretation, Multiple Linear Regression, and Artificial Neural Network algorithms were used to predict the concentrations of SO2 and NO2. The main goal was to study different interactions between sensors and gases in multicomponent gas mixtures and show that it is insufficient to calibrate sensors in only a single gas.
EN
Ground settlement during and after tunnelling using TBM results in varying dynamic and static load action on the geo-stratum. It is an undesirable effect of tunnel construction causing damage to the surface and subsurface infrastructure, safety risk, and increased construction cost and quality issues. Ground settlement can be influenced by several factors, like method of tunnelling, tunnel geometry, location of tunnelling machine, machine operational parameters, depth & its changes, and mileage of recording point from starting point. In this study, a description and evaluation of the performance of the artifcial neural network (ANN) was undertaken and a comparison with multiple linear regression (MLR) was carried out on ground settlement prediction. The performance of these models was evaluated using the coefficient of determination R2, root mean square error (RMSE) and mean absolute percentage error (MAPE). For ANN model, the R2, RMSE and MAPE were calculated as 0.9295, 4.2563 and 3.3372, respectively, while for MLR, the R2, RMSE and MAPE, were calculated as 0.5053, 11.2708, 6.3963 respectively. For ground settlement prediction, both ANN and MLR methods were able to predict significantly accurate results. It was further noted that the ANN performance was higher than that of the MLR.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.