Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  redundancy optimization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Ant Colony Optimization for Electrical Power System Expansion-Scheduling
100%
|
|
tom R. 84, nr 7
36-42
EN
This paper uses an ant colony meta-heuristic optimization method to solve the multi-stage expansion problem for multi-state series-parallel systems. The study horizon is divided into several periods. At each period the demand distribution is forecasted in the form of a cumulative demand curve. A multiple-choice of additional components among a list of available product can be chosen and included into any subsystem component at any stage to improve the system performance. The components are characterized by their cost, performance (capacity) and availability. The objective is to minimize the whole investment-costs over the study period while satisfying availability or performance constraints. A universal generating function technique is applied to evaluate system availability. The ant colony approach is required to identify the optimal combination of adding components with different parameters to be allocated in parallel at each stage.
PL
W artykule omówiono metodę optymalizacji wykorzystującą algorytmy mrówkowe. Rozwiązywano problem wielopoziomowej rozbudowy szeregowo-równoległego system zasilania. Horyzont czasowy analizy został podzielony na mniejsze okresy. W każdym okresie potrzeby są prognozowane w postaci kumulacyjnej krzywej potrzeb. Różny wybór dodatkowych składowych systemu był możliwy na każdym etapie analizy. Te składowe były charakteryzowane przez koszt, możliwości i parametry. Celem była minimalizacja całkowitych kosztów inwestycji przy wymuszonych parametrach. Algorytm mrówkowy został wykorzystany do optymalizacji systemu na każdym etapie dodawania nowego elementu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.