Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  recurrence formula
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Some counterexamples to subexponential growth of orthogonal polynomials
100%
EN
We give examples of polynomials p(n) orthonormal with respect to a measure μ on ⨍ such that the sequence {p(n,x)} has exponential lower bound for some points x of supp μ. Moreover, the set of such points is dense in the support of μ.
2
75%
|
|
tom Vol. 54, nr 1
178--188
EN
In the current study, we introduce the two-variable analogue of Jacobi matrix polynomials. Some properties of these polynomials such as generating matrix functions, a Rodrigue-type formula and recurrence relations are also derived. Furthermore, some relationships and applications are reported.
EN
Introduction and aim: The paper presents a recurrence formula, some differential compounds and differential equation for Laguerre polynomials. The aim of the discussion was to give some proofs of presented dependences. Material and methods: Selected material based on a recurrence equation, some differential compounds and differential equation has been obtained from the right literature. In presented proofs of theorems was used a deduction method. Results: Has been shown some proof of the generating function for Laguerre polynomials. It has been done the proof of recurrence compound between Laguerre polynomials, some proof of differential compound and two differential equations of the first order and differential equation of the second order for Laguerre polynomials. Conclusion: The proofs of some differential equations of the first and second order for Laguerre polynomials have been presented in the considerations based on the literature data.
PL
Wstęp i cel: W pracy przedstawiono związek rekurencyjny, zależności różniczkowe i równanie różniczkowe dla wielomianów Laguerre’a. Celem rozważań było przeprowadzenie dowodów omawianych własności. Materiał i metody: Materiał stanowiły wybrane zależności rekurencyjne i równanie różniczkowe uzyskane z literatury przedmiotu. W przeprowadzonych dowodach zastosowano metodę dedukcji. Wyniki: Pokazano dowód twierdzenia o funkcji tworzącej dla wielomianów Laguerre’a. Przeprowadzono dowód równania rekurencyjnego dla wielomianów Laguerre’a, zależności różniczkowej oraz dwóch równań różniczkowych pierwszego rzędu i równania różniczkowego drugiego rzędu dla wielomianów Laguerre. Wniosek: Dowody niektórych równań różniczkowych pierwszego i drugiego rzędu wielomianów Laguerre’a przedstawiono w rozważaniach na podstawie danych literaturowych.
|
|
nr 3
305-318
EN
We give characterizations of the uniform distribution in terms of moments of order statistics when the sample size is random. Special cases of a random sample size (logarithmic series, geometrical, binomial, negative binomial, and Poisson distribution) are also considered.
|
|
tom T. 2
59--68
PL
W pracy przedstawiono związek rekurencyjny, zależności różniczkowe i równanie różniczkowe dla wielomianów Legendre’a. Celem rozważań było przeprowadzenie dowodów omawianych własności. Materiał i metody: Materiał stanowiły wybrane zależności rekurencyjne i równanie różniczkowe uzyskane z literatury przedmiotu. W przeprowadzonych dowodach zastosowano metodę dedukcji. Wyniki: Pokazano dowód twierdzenia o funkcji tworzącej dla wielomianów Legendre’a stosując metodę residuum funkcji. Przeprowadzono dowód związku rekurencyjnego, czterech zależności różniczkowych oraz równania różniczkowego dla wielomianów Legendre’a. Wnioski: Pochodną wielomianu Legendre’a wyrażoną przez wielomiany Legendre’a można określić z równania (1–z2)P'n(z) = nPn-1(z) – nzPn(z) dla n = 1, 2, … . Wielomian Legendre’a u=Pn(z) jest całką szczególną równania [(1-z2)u']'+n(n+1)u =0 dla n = 0, 1, 2,
EN
Introduction and aim: The paper presents a recurrence formula, some differential compounds and differential equation for Legendre polynomials. The aim of the discussion was to give some proofs of presented dependences. Material and methods: Selected material based on a recurrence formula, some differential compounds and differential equation has been obtained from the right literature. In presented proofs of theorems was used a deduction method. Results: Has been shown some proof of the theorem of the generating function for Legendre polynomials by using the method of function residue. It has been done the proof of recurrence formula, some proofs of four differential compounds and differential equation for Legendre polynomials. Conclusions: Some derivative of Legendre polynomial expressed by Legendre polynomials can be determined from the equation (1–z2)P'n(z) = nPn-1(z) – nzPn(z) for n = 1, 2, … . Legendre polynomial u=Pn(z) is the particular integral solution of the equation [(1-z2)u']'+n(n+1)u =0 for n = 0, 1, 2, … .
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.