Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  recommendation system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 49, No. 2
121--138
EN
To address the issue of insufficient accuracy in consumer recommendation systems, a new biased network inference algorithm is proposed based on traditional network inference algorithms. This new network inference algorithm can significantly improve the resource allocation ability of the original one, thereby improving recommendation performance. Then, the performance of this algorithm is verified through comparative experiments with network-based inference algorithms, network inference algorithms with initial resource optimization, and heterogeneous network inference algorithms. The results showed that the accuracy of the new network inference algorithm was 24.5%, which was superior to traditional one. In terms of system performance testing, the recommendation hit rate of the new network inference algorithm increased by 13.97%, which was superior to the other three comparative algorithms. The experimental results indicated that a novel network inference algorithm with bias can improve the performance of consumer recommendation systems, providing new ideas for improving the performance of consumer recommendation systems.
4
Content available remote Systemy rekomendacji do zastosowania w przemyśle chemicznym
63%
|
2021
|
tom Vol. 26
133-139
EN
This paper presents a comparison between relational and graph database systems' performance in a web application recommendation system. The comparison is conducted on five different queries starting with simple ones, leading up to more complex queries, that are performed in a typical web social application. The implementation is done in C# using .NET framework and the database systems used are SQL Server and Neo4J. To effectively test the performance of both graph and relational database systems, tests were performed on 4 data sets. The tests imply performing 5 different retrieval queries taken in order of difficulty both in SQL and Neo4J.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.