Octahedral [Cu(2-benzoylpyridine)2 (H20)2] complexes in the Cu(2-Bzpy)2-(NO3)2 .2H2O are very dynamical and Cu(II) ions are very weakly coupled as it is shown by the single crystal EPR measurements in the temperature range 4.2-300 K. Rigid lattice limit (9 K) of spin-Hamiltonian parameters are: gx = 2.137, gy = 2.014, gz = 2.306 as determined by decoupling of exchange merged EPR lines. The ground state is predominantly Ix(2) -y(2)) with 8% of the Iz(2)) state. This mixing is produced by zero-point motions in the ground vibrational state and results in g x > gy with strong lowering of the gy-value. The decoupling procedure gave superexchange coupling parameter J = 0.0040 cm(1), which unexpectedly is temperature independent in contrast to other weakly coupled Cu(II) paramagnets. The g-factors show relatively strong temperature variations with gy practically not affected by temperature and a tendency to averaging of the g x and gz with room tem-perature parameters: g x = 2.161, gy = 2.013, gz = 2.285. This is explained as the pseudo Jahn-1eller effect with dynamical transitions between two elongated octahedral axes, i.e. O-Cu-O (x-axis) and H2O-Cu-H2O (z-axis) with N-Cu-N (y-axis) direction ill the in-plane coordination with pyridine nitrogen not affected by vibronic dynamics. The vibronic effect can be described by two-well model in the temperature range 80-150 K only with energy difference between the ground vibronic state in the well being 220 cm-l. At lower temperatures Cu(II) complexes are strongly localized in the deepest potential well, whereas at higher temperatures, the vibronic g-factor averaging is dominated by the other mechanism.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The concept of calcium formate process with the use of a double exchange reaction between sodium formate and calcium nitrate has been proposed. In order to choose the optimum technological version of that process, the preliminary research work was performed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.