Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  rate of force development
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Performance assessment has become an invaluable component of monitoring participant's development in distinct sports, yet limited and contradictory data are available in trained subjects. The purpose of this study was to examine the relationship between ball throwing velocity during a 3-step running throw in elite team handball players and selected measures of rate of force development like force, power, velocity, and bar displacement during a concentric only bench press exercise in elite male handball players. Fitteen elite senior male team handball players volunteered to participate. Each volunteer had power and bar velocity measured during a concentric only bench press test with 25, 35, and 45 kg as well as having one-repetition maximum strength determined. Ball throwing velocity was evaluated with a standard 3-step running throw using a radar gun. The results of this study indicated significant associations between ball velocity and time at maximum rate of force development (0, 66; p<0.05) and rate of force development at peak force (0, 56; p<0.05) only with 25kg load. The current research indicated that ball velocity was only median associated with maximum rate of force development with light loads. A training regimen designed to improve ball-throwing velocity in elite male team handball players should emphasize bench press movement using light loads.
EN
This study aimed to examine the effects of age on vertical jump height and handgrip strength measurements in women. A secondary aim was to investigate the correlations between vertical jump height and handgrip strength. Methods: Twenty young (21.5 ± 2.8 years) and twenty older (67.0 ± 5.5 years) healthy women participated in this study. Handgrip contractions were used to assess strength measurements of peak force and rate of force development at different time intervals. Vertical jumps were performed on a jump mat. The jump mat measured vertical jump height based on flight time. Results: The older women had lower vertical jump height (P < 0.001) and handgrip peak force (P = 0.028) and rate of force development values (P = 0.003–0.016) than the younger women. A larger difference was observed between the groups for vertical jump height (41%) than handgrip peak force and rate of force development (12–17%). Of all the strength measurements, handgrip rate of force development at 200 ms in the young (r = 0.502, P = 0.024) and older (r = 0.446, P = 0.049) women exhibited the strongest correlation with vertical jump height. Conclusions: This investigation showed significantly lower vertical jump height and handgrip peak force and rate of force development values in older compared to younger women. Interestingly, the difference between age groups was larger for jump height than handgrip peak force and rate of force development. This suggests that vertical jump performance may be more severely affected by age than handgrip strength characteristics.
3
Content available remote Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance
86%
EN
The purpose of this study was to investigate the effects of a low-load gluteal warm-up protocol on countermovement and squat jump performance. Research by Crow et al. (2012) found that a low-load gluteal warm-up could be effective in enhancing peak power output during a countermovement jump. Eleven subjects performed countermovement and squat jumps before and after the gluteal warm-up protocol. Both jumps were examined in separate testing sessions and performed 30 seconds, and 2, 4, 6 & 8 minutes post warm-up. Height jumped and peak ground reaction force were the dependent variables examined in both jumps, with 6 additional variables related to fast force production being examined in the squat jump only. All jumps were performed on a force platform (AMTI OR6-5). Repeated measures analysis of variance found a number of significant differences (p ≤ 0.05) between baseline and post warm-up scores. Height jumped decreased significantly in both jumps at all rest intervals excluding 8 minutes. Improvement was seen in 7 of the 8 recorded SJ variables at the 8 minute interval. Five of these improvements were deemed statistically significant, namely time to peak GRF (43.0%), and time to the maximum rate of force development (65.7%) significantly decreased, while starting strength (63.4%), change of force in first 100 ms of contraction (49.1%) and speed strength (43.6%) significantly increased. The results indicate that a gluteal warm-up can enhance force production in squat jumps performed after 8 minutes recovery. Future research in this area should include additional warm-up intervention groups for comparative reasons.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.