The article presents results of work aimed at developing methods for classifying wetland habitats, based on different types of satellite data and on various classification approaches. Very high resolution WorldView-2 satellite images were used for the research work as basic input data. An object-oriented, rule-based approach was applied to achieve high accuracy of classification of wetland vegetation classes. As a result of the research a semi-automatic classification method has been prepared within the eCognition environment, which enables high accuracy of the resultant map (ca. 90%) to be reached. At the final stage of the research, applicability of radar Terra SAR-X images for vegetation classification was studied.
PL
W artykule zostały przedstawione wyniki prac ukierunkowanych na opracowanie metod klasyfikacji obszarów podmokłych, bazujących na różnych typach danych satelitarnych oraz na różnych podejściach klasyfikacyjnych. Do prac badawczych jako podstawowe materiały wykorzystano wysokorozdzielcze obrazy satelitarne WorldView-2. Zastosowano metodę klasyfikacji obiektowej do osiągnięcia wysokiej dokładności klasyfikacji zbiorowisk roślinnych na obszarach podmokłych. W wyniku prac utworzono półautomatyczną metodę klasyfikacji w środowisku eCognition, która umożliwia osiągnięcie wysokiej dokładności (rzędu 90%). W końcowej części prac badawczych przeprowadzono analizę stosowalności obrazów radarowych Terra SAR-X dla celów klasyfikacji typów roślinności.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.