Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  równanie wymiany ciepła
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paper a new, state space, fully discrete, fractional model of a heat transfer process in one dimensional body is addressed. The proposed model derives directly from fractional heat transfer equation. It employes the discrete Grünwald-Letnikov operator to express the fractional order differences along both coordinates: time and space. The practical stability and numerical complexity of the model are analysed. Theoretical results are verified using experimental data.
EN
In the paper a new, fractional order, discrete model of a two-dimensional temperature field is addressed. The proposed model uses Grünwald-Letnikov definition of the fractional operator. Such a model has not been proposed yet. Elementary properties of the model: practical stability, accuracy and convergence are analysed. Analytical conditions of stability and convergence are proposed and they allow to estimate the orders of the model. Theoretical considerations are validated using exprimental data obtained with the use of a thermal imaging camera. Results of analysis supported by experiments point that the proposed model assures good accuracy and convergence for low order and relatively short memory length.
EN
The paper presents analysis of the positivity for a two-dimensional temperature field. The process under consideration is described by the linear, infinite-dimensional, noninteger order state equation. It is derived from a two-dimensional parabolic equation with homogenous Neumann boundary conditions along all borders and homogenous initial condition. The form of control and observation operators is determined by the construction of a real system. The internal and external positivity of the model are associated to the localization of heater and measurement. It has been proven that the internal positivity of the considered system can be achieved by the proper selection of attachment of a heater and place of a measurement as well as the dimension of the finite-dimensional approximation of the considered model. Conditions of the internal positivity associated with construction of real experimental system are proposed. The postivity is analysed separately for control and output of the system. This allows one to analyse the positivity of thermal systems without explicit control. Theoretical considerations are numerically verified with the use of experimental data. The proposed results can be applied i.e. to point suitable places for measuring of a temperature using a thermal imaging camera.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.