Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  równanie Hamiltona-Jacobiego-Bellmana
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: In global trade, shipping companies are forced to manage empty containers due to imbalances in international trade activities. For decision-makers, the problems require considering restrictions and an uncertain environment and repositioning or leasing the containers to satisfy the rapidly changing global demands regardless of the epidemic outbreak's impact on the seaport. The proposed approach can help decision-makers manage the empty container in port yards more effectively under market uncertainty by employing the Bellman optimality principle for the stochastic dynamic system. Methods: A stochastic production planning model is employed to cope with uncertainty and unexpected events to ensure a robust management strategy. Ito's formula describes the dynamic model for solving a stochastic differential equation. This paper uses stochastic optimal control theory to deal with efficient empty container management at the port yard. The findings have revealed the effectiveness of the proposed framework, which will provide a decision-making support scheme for efficient port operations. Results: The presented algorithm is realized by a novel approach, employing the Hamilton-Jacobi-Bellman (HJB) equation for optimal stochastic control problems. When comparing the model with and without uncertainty events, the gap is just about 0.04 %, proving the robustness of the proposed model. The results provide a decision support system for port managers when managing the empty container in the seaport yard. Conclusions: The proposed model not only figures out the optimal ordering of empty containers for each cycle but also points out the optimal safety stock level. Using a stochastic optimization approach, decision-makers can implement a strategic management policy to optimize seaport operational costs under market disruptions.
EN
In this paper, we introduce a new method to analyze the convergence of the standard finite element method for Hamilton-Jacobi-Bellman equation with noncoercive operators with nonlinear source terms with the mixed boundary conditions. The method consists of combining Bensoussan-Lions algorithm with the characterization of the solution, in both the continuous and discrete contexts, as fixed point of contraction. Optimal error estimates are then derived, first between the continuous algorithm and its finite element counterpart and then between the continuous solution and the approximate solution.
EN
This paper discusses the numerical resolution of the Hamilton-Jacobi-Bellman equation associated with optimal control problem when the state equation is of algebraic differential type. We discuss two numerical schemes. The first reduces to the standard framework, while the second does not suppose any knowledge of the Jacobian of the data. We obtain some error estimates, and display numerical results obtained on a simple test problem.
PL
Artykuł rozpatruje rozwiązanie numeryczne równania Hamiltona-Jacobiego-Bellmana, związanego z zagadnieniem sterowania optymalnego w przypadku, gdy równanie stanu jest algebraiczno-różniczkowe. Rozważane są dwie procedury numeryczne. Pierwsza z nich sprowadza się do postępowania standardowego, podczas gdy druga nie zakłada znajomości Jakobianu danych. Otrzymano pewne oceny błędu, a na końcu artykułu pokazano wyniki numeryczne dla prostego zadania testowego.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.