Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  queueing systems with non-homogeneous customers
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
M/M/n/(m,V) queueing systems with service time independent of customer volume are well known models used in computer science. In real computer systems (computer networks etc.) we often deal with the overload problem. In computer networks we solve the problem using AQM techniques, which are connected with introducing some accepting function that lets us reject in random way some part of the arriving customers. It causes reduction of each customer's mean waiting time and let us avoid jams in consequence. Unfortunately, in this way the loss probability increases. In this paper we investigate the analogous model based on some generalization of M/M/n/(m,V) queueing system. We obtain formulas for a stationary number of customers distribution function and loss probability and we do some computations in special cases.
EN
In the paper, we investigate queueing system M/G/∞ with non-homogeneous customers. By non-homogeneity we mean that each customer is characterized by some arbitrarily distributed random volume. The arriving customers appear according to a stationary Poisson process. Service time of a customer is proportional to his its volume. The system is unreliable, which means that all its servers can break simultaneously and then the repair period goes on for random time having an arbitrary distribution. During this period, customers present in the system and arriving to it are not served. Their service continues immediately after repair period termination. Time intervals of the system in good repair mode have an exponential distribution. For such system, we determine steady-state sojourn time and total volume of customers present in it distributions. We also estimate the loss probability for the similar system with limited total volume. An analysis of some special cases and some numerical examples are attached as well.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.