The problem of optimal reorientation of the spacecraft orbit is considered. For solving the problem we used quaternion equations of motion written in rotating coordinate system. The use of quaternion variables makes this consideration more efficient. The problem of optimal control is solved on the basis of the maximum principle. An example of numerical solution of the problem is given.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A wavelet packet based on 4-band building blocks was used to implement an auditory model for 44.1kHz and 16kHz sampling frequency. The underlying paraunitary filter bank is implemented using a quaternionic lattice structurally insensitive to the quantization of its coefficients. Both the linear phase and orthogonality are possible for 4-band wavelets, so a better perceptual quality can be expected and an increased compression ratio for the coders based on the proposed solution in comparison to standard 2-band wavelet packets or a warped DFT transform. These features and a low computational complexity predestinate this approach to be a tempting alternative to widely known solutions.
In this paper we introduce and study a generalization of the split Pell quaternions - split r-Pell quaternions. We give some identities, among others Binet's formula, Catalan's, Cassini's and d'Ocagne's identity for these numbers.
In this paper we introduce a one-parameter generalization of the split Jacobsthal quaternions, namely the split r-Jacobsthal quaternions. We give a generating function, Binet formula for these numbers. Moreover, we obtain some identities, among others Catalan, Cassini identities and convolution identity for the split r-Jacobsthal quaternions.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper proposes a fast range image registration algorithm, in which control points are sampled on the basis of distance from the geometric origin of an object. The sampled point is assumed to be in the same region if the quantization error in the three-dimensional (3-D) space is less than a threshold. For range image registration, finding matching points anly in the same region reduces the computation time greatly. Experiments with various synthetic and real images show that the accuracy of registartion parameters is improved with a low computational load.
It is well known that starting with real structure, the Cayley-Dickson process gives complex, quaternionic, and octonionic (Cayley) structures related to the Adolf Hurwitz composition formula for dimensions \(p = 2, 4\) and \(8\), respectively, but the procedure fails for \(p = 16\) in the sense that the composition formula involves no more a triple of quadratic forms of the same dimension; the other two dimensions are \(n = 2^7\). Instead, Ławrynowicz and Suzuki (2001) have considered graded fractal bundles of the flower type related to complex and Pauli structures and, in relation to the iteration process \(p \to p + 2 \to p + 4 \to ...\), they have constructed \(2^4\)-dimensional “bipetals” for \(p = 9\) and \(2^7\)-dimensional “bisepals” for \(p = 13\). The objects constructed appear to have an interesting property of periodicity related to the gradating function on the fractal diagonal interpreted as the “pistil” and a family of pairs of segments parallel to the diagonal and equidistant from it, interpreted as the “stamens”. The first named author, M. Nowak-Kepczyk, and S. Marchiafava (2006, 2009a, b) gave an effective, explicit determination of the periods and expressed them in terms of complex and quaternionic structures, thus showing the quaternionic background of that periodicity. In contrast to earlier results, the fractal bundle flower structure, in particular petals, sepals, pistils, and stamens are not introduced ab initio; they are quoted a posteriori, when they are fully motivated. Physical concepts of dual and conjugate objects as well as of antiparticles led us to extend the periodicity theorem to structure fractals in para-quaternionic formulation, applying some results in this direction by the second named author. The paper is concluded by outlining some applications.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Moments and moment invariants have become a powerful tool in image processing owing to their image description capability and invariance property. But, conventional methods are mainly introduced to deal with the binary or gray-scale images, and the only approaches for color image always have poor color image description capability. Based on Exponent moments (EMs) and quaternion, we introduced the quaternion Exponent moments (QEMs) for describing color images in this paper, which can be seen as the generalization of EMs for gray-level images. It is shown that the QEMs can be obtained from the EMs of each color channel. We derived and analyzed the rotation, scaling, and translation (RST) invariant property of QEMs. We also discussed the problem of color image retrieval using QEMs. Experimental results are provided to illustrate the efficiency of the proposed color image descriptors.
Представлен математический аппарат и численные результаты иллюстрирующие возможность использования кватернионов (параметров Родрига-Гимильтона) для описания вращательного движения Беспилотажный Летающий Аппарат (БИЛА) рассматриваемого как твердое тело. По сравнению с другими способами описания кинематики вращательного движения летательного аппарата использование кватернионов имеет то преимущество, что позволяет избежать появления особенностей в кинематических уравнениях.
EN
This paper has been written to present mathematical apparatus and computational results, illustrated the possibility of utilization of quaternions (Rodriguez-Hamilton parameters) to description of spin movement of UAV, treated as rigid body, in comparison to different methods of description of spin movement kinematics of flying vehicles the quaternions utilization has that superiority that it allow to avoid appearing singularity in kinematics' equations.
In this paper we review quaternion encryption methods for multimedia transmission. We explain their weak and strong properties as well as suggest possible modifications. Our main focus is an algorithm QFC presented in paper by Dzwonkowski et al. (2015). All encryption methods, presented in this paper, use special properties of quaternions to perform rotations of data sequences in 3D space. Each method uses a common key generation algorithm (to form an infinite key space), as well as a modular arithmetic for operations with quaternions. A computer-based analysis has been carried out for all encryption methods. The obtained results are discussed at the end of this paper.
PL
Artykuł jest poswięcony analizie znanych metod szyfrowania kwaternionowego dla zabezpieczania danych multimedialnych. Skupiono się na wyeksponowaniu ich słabych i silnych stron oraz zaproponowaniu możliwych modyfikacji. Tematem przewodnim artykułu jest analiza algorytmu QFC zaproponowanego przez autorów w pracy Dzwonkowski i in. (2015). Omawiane w tym artykule metody szyfrowania wykorzystują właściwości ciała kwaternionów do przeprowadzania rotacji wektorów danych w przestrzeni trójwymiarowej. Wszystkie metody wykorzystują ten sam algorytm generacji kluczy oraz arytmetykę modularną dla operacji kwaternionowych. Opisywane metody szyfrowania kwaternionowego zbadano za pomocą symulacji komputerowej, a otrzymane wyniki przeanalizowano pod kątem odporności na ataki kryptoanalityczne.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we introduce and study a generalization of the split Pell quaternions - split r-Pell quaternions. We give some identities, among others Binet's formula, Catalan's, Cassini's and d'Ocagne's identity for these numbers.
PL
W artykule wprowadzono pewne jednoparametrowe uogólnienie kokwaternionów Pella - kokwaterniony r-Pella. Przedstawione zostały różne tożsamości dla tych liczb m.in. wzór Bineta, Catalana i Cassiniego.
W ostatnich latach nadmiarowe reprezentacje sygnałów uzyskiwane za pomocą nadpróbkowanych banków (zespołów) filtrów znalazły wiele zastosowań w cyfrowym przetwarzaniu sygnałów. Nadmiarowość okazuje się użyteczna w kodowaniu sygnałów z wysoką jakością, umożliwia zabezpieczenie danych przed błędami transmisji, a związana z nią niewrażliwość na przesunięcie sygnału w czasie jest korzystna w punktu widzenia usuwania szumu i analizy tekstur. Choć we wcześniejszych pracach z tych dziedzin przeważnie wykorzystywano paraunitarne banki filtrów, nie poruszano zagadnień związanych z realizacją takich systemów. Artykuł prezentuje nową, kwaternionową strukturę kratową do implementacji ośmiokanałowych nadpróbkowanych paraunitarnych banków filtrów o liniowych odpowiedziach fazowych OLPPUFB (ang. Oversampled Linear-Phase Paraunitary Filter Banks), która gwarantuje zachowanie energii sygnału niezależnie od precyzji, z jaką są reprezentowane jej współczynniki.
EN
Recently, redundant signal representations obtained using oversampled filter banks have found many applications in digital signal processing. The redundancy turns out to be useful in high-quality coding, allows for protecting data from transmission errors, whereas the related shift-invariance is advantageous in denoising and texture analysis. Even though paraunitary filter banks have mainly been used in works on these topics, issues related to the realization of such systems have not been raised. In the present paper, a novel quaternionic structure forimplementing eight-channel oversampled linear-phase paraunitary filter banks is proposed, which guarantees signal energy preservation regardless of the precision of coefficient representation.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Principal component analysis (PCA) based on L1-norm has drawn growing interest in recent years. It is especially popular in the machine learning and pattern recognition communities for its robustness to outliers. Although optimal algorithms for L1-norm maximization exist, they have very high computational complexity and can be used for evaluation purposes only. In practice, only approximate techniques have been considered so far. Currently, the most popular method is the bit-flipping technique, where the L1-norm maximization is viewed as a combinatorial problem over the binary field. Recently, we proposed exhaustive, but faster algorithm based on two-dimensional Jacobi rotations that also offer high accuracy. In this paper, we develop a novel variant of this method that uses three-dimensional rotations and quaternion algebra. Our experiments show that the proposed approach offers higher accuracy than other approximate algorithms, but at the expense of the additional computational cost. However, for large datasets, the cost is still lower than that of the bit-flipping technique.
Artykuł dotyczy drabinkowej struktury układu mnożenia kwaternionów, która stanowi czterowymiarowe rozszerzenie znanego schematu lifting do realizacji mnożenia zespolonego (obrotu planarnego). Przedstawiono metodę analizy zakresu dynamicznego i przekształcenia strukturalne, które ułatwiają implementację algorytmu z użyciem arytmetyki o skończonej precyzji. W szczególności pokazano jak zastąpić układ mnożący o zadanym współczynniku wersją, w której ta liczba hiperzespolona ma tak poprzestawiane części, że odpowiedni schemat obliczeniowy charakteryzuje się zminimalizowanym zakresem dynamicznym, co upraszcza skalowanie w wypadku implementacji stałoprzecinkowej.
EN
A ladder structure of quaternion multiplier is considered, which is a four-dimensional extension of the known lifting scheme for computing complex multiplication (planar rotation). A method of dynamic range analysis and structural transformations are presented which facilitate finite-precision implementation of the algorithm using finite-precision arithmetic. In particular, it is shown how to substitute the multiplier of a given coefficient with a version in which the hypercomplex number has parts permuted in such a way that the corresponding computational scheme has minimized dynamic range, which simplifies scaling in the case of fixed - point implementation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.