Superpozycja kwantowa jest fundamentalną zasadą mechaniki kwantowej a w informacyjnych technikach kwantowych jest fundamentalną przestrzenią istnienia kubitu, np. dwupoziomowego energetycznie, i jego ogólniejszej formy, wielopoziomowego energetycznie, kuditu. Dwa podstawowe/bazowe/czyste stany kwantowe kubitu mogą być dodane do siebie, nałożone, superponowane, współistnieć jednocześnie i rezultatem jest inny stan kwantowy tego kubitu. Każdy stan kwantowy kubitu może być reprezentowany jako suma dwóch różnych stanów kwantowych. Każdy stan kwantowy kuditu może być reprezentowany jako suma wielu różnych stanów kwantowych. Koherencja jest zasadniczą kategorią aby kubit był w stanie superpozycji. Koherencja kwantowa (i związana z nią interferencja) oraz splątanie są w pewnym sensie wspólnie zakorzenione w zasadzie superpozycji kwantowej. Koherencja i splątanie kwantowe są kategoriami zasobowo i operacyjnie pokrewnymi choć konceptualnie i ideologicznie odmiennymi. Zasobowe ujęcie tych kategorii stosuje wymienne miary ilościowe i jakościowe, pozwalające na analogiczną ocenę możliwości funkcjonalnych kwantowych systemów obliczeniowych i metrologicznych pozostających w stanie superpozycji, poprzez zgromadzone w nich zasoby koherencji i/lub splątania. Superpozycja kwantowa jest rodzajem fundamentu, na którym mierzalne ilościowo i jakościowo zasoby w postaci koherencji i splątania umożliwiają budowę technologii kwantowych i aplikacji. Miar tych zasobów kwantowych, prostszych dla stanów bazowych, bardziej złożonych dla stanów mieszanych, jest wiele określających je z różnych stron funkcjonalnych. Dla kwantowych stanów mieszanych definiowane są także inne miary jak np. niezgoda (discord) kwantowa.
EN
Quantum superposition is a fundamental principle of quantum mechanics, and in quantum information techniques it is the fundamental space for the existence of a qubit, two-level energy quantum system, and its more general form, multi-level energy quantum system, a qudit. Two fundamental / basis / pure quantum states of a qubit can be added together, superposed, coexist simultaneously, and the result is a different quantum state of this qubit. Each quantum state of a qubit can be represented as the sum of two different quantum states. Each qudit quantum state can be represented as the sum of many different quantum states. Coherence is an essential category for a qubit to be in superposition. Quantum coherence (and the associated interference) and entanglement are, in a sense, co-rooted in the principle of quantum superposition. Coherence and quantum entanglement are categories in terms of resources and operationally related, although conceptually and ideologically different. The resource approach to these categories uses interchangeable quantitative and qualitative measures, allowing for an analogous assessment of the functional capabilities of quantum computational and metrological systems remaining in a state of superposition, through the resources of coherence and entanglement stored in them. Quantum superposition is a kind of a basement foundation, on which measurable qualitatively and quantitatively resources like coherence and entanglement enable building quantum technologies and applications. There are numerable measures for these quantum resources, simpler for pure quantum states and more complex for mixed states. These measures see the resources from different functional states. There are defined other measures especially for mixed quantum states like the quantum discord.
Artykuł jest kolejną częścią dydaktycznego cyklu swobodnych popularnych esejów na temat informacyjnych technologii kwantowych. Cykl tematyczny ITK został rozpoczęty w styczniowym zeszycie Elektroniki 1/2021 i pokrywał się z prowadzonymi przez autora wykładami dla doktorantów na ten temat na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej. Dekoherencja kwantowa jest nietrywialnym i złożonym procesem przejścia przez niedokładnie znaną granicę między światami kwantowym i klasycznym. Niedokładność wiedzy o tej granicy dotyczy jej położenia, rozmycia w kwantowej i klasycznej przestrzeniach fazowych, wymiarów obszaru przejściowego, właściwości fizycznych, zakresu obowiązywania praw obu światów w pobliżu tej granicy, różnorodności kanałów przechodzenia granicy, zadziwiającej selektywności i wybiórczości (nazywanej superselekcją/nadwyborem) dekoherencyjnych sprzężeń różnych stanów obiektu kwantowego (tutaj kubitu) z przestrzenią termodynamiczną, itp. Ta granica musi pozostać rozmyta, bo prawa prawdopodobieństwa i znajomość stanów są różne po obu jej stronach. Kubit przechodząc proces dekoherencji podlega wymienionym zjawiskom w obszarze granicznym zależnie od właściwości kanałów dekoherencji które go dotyczą. Ogólnie kanały dekoherencji są związane z nieuchronnym sprzężeniem kubitu ze światem makroskopowym, nazywanym tutaj klasycznym lub przestrzenią termodynamiczną. Kanałami dekoherencji są zakłócenia i szumy kwantowe. W komputingu kwantowym stan kubitu mierzymy po wykonaniu cyklu obliczeń kwantowych. Sprzęt pomiarowy i proces pomiaru są kanałami dekoherencji. Pomiar jest procesem gwałtownym i nieodwracalnym transformującym kwantowy kubit do świata klasycznego. W czasie obliczeń może dochodzić do częściowej dekoherencji stanu kubitu. Może to być proces odwracalny metodami kwantowymi.
EN
This article is the next part of a didactic series of popular essays on quantum information technology. The QIT thematic cycle was started in the January issue of Electronics monthly Journal and coincided with the author’s lectures on this topic for PhD students at the Faculty of Electronics and Information Technology of the Warsaw University of Technology. Quantum decoherence is a non-trivial and complex process of passing through an inaccurately known boundary between the quantum and classical worlds. The inaccuracy of knowledge about this border concerns its location, blurring in quantum and classical phase spaces, dimensions of the transition region, physical properties, the scope of the laws of both worlds near this border, the diversity of the border crossing channels, astonishing selectivity of decoherence couplings (superselection) between different quantum states of quantum object (qubit) with thermodynamic space, etc. This border must remain blurred and fuzzy because the laws of probability and knowledge of the states are different on both sides. The qubit undergoing the process of decoherence is subject to the above-mentioned phenomena in the border area depending on the properties of the decoherence channels that concern it. Generally, the decoherence channels are associated with the inevitable coupling of the qubit with the macroscopic world, hereinafter referred to as the classical, macroscopic, or thermodynamic space. The channels of decoherence are interference and quantum noise. In quantum computing, the state of a qubit is measured after the cycle of quantum computations. The measurement equipment and the measurement process are channels of decoherence. Measurement is a violent and irreversible process transferring the qubit to the classical world. During the calculations, there may be a partial decoherence of the qubit state. It could be a process that can be reversed by quantum methods.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.