Unmanned, battery-powered quadrotors have a limited onboard energy resources. However, flight duration might be increased by reasonable energy expenditure. A reliable mathematical model of the drone is required to plan the optimum energy management during the mission. In this paper, the theoretical energy consumption model was proposed. A small, low-cost DJI MAVIC 2 Pro quadrotor was used as a test platform. Model parameters were obtained experimentally in laboratory conditions. Next, the model was implemented in MATLAB/Simulink and then validated using the data collected during real flight trials in outdoor conditions. Finally, the Monte-Carlo simulation was used to evaluate the model reliability in the presence of modeling uncertainties. It was obtained that the parameter uncertainties could affect the amount of total consumed energy by less than 8% of the nominal value. The presented model of energy consumption might be practically used to predict energy expenditure, battery state of charge, and voltage in a typical mission of a drone.
Artykuł przedstawia wyniki przeprowadzonych badań teoretycznych dotyczących zastosowania metody gradientów sprzężonych do rozwiązywania problemu sterowania optymalnego wysokością lotu czterowirnikowego bezzałogowego statku powietrznego (BSP). Ze względu na różnice w strategii sterowania mające wpływ na postać minimalizowanego funkcjonału jakości, problem rozdzielono na dwa zagadnienia – zmianę wysokości oraz stabilizację wysokości. Przeprowadzone analizy pozwoliły na określenie wpływu zmian postaci funkcjonału jakości, jego parametrów czasowych oraz współczynników wagowych na wyznaczoną za pomocą metody gradientów sprzężonych optymalną trajektorię stanu i sterowanie czterowirnikowego BSP podczas zmiany wysokości lotu oraz jej stabilizacji.
EN
This paper presents results of studies on the usage of conjugate gradient method for solving optimal control problem of flight altitude control of a quadrotor unmanned aerial vehicle (UAV). Due to the differences in the control strategy affecting the character of minimized quality functional, the problem was resolved on two issues: changing the flight altitude and altitude stabilization. Conducted researches allowed to determine the impact of changes in the form of a quality functional as well as of its timing and weighting factors on the designated optimal control and state trajectory of a quadrotor UAV using conjugate gradient method during changing and stabilizing flight altitude.
In this paper, the design and implementation of a nonlinear model‐based predictive controller (NMPC) for predefined trajectory tracking and to minimize the control effort of a smartphone‐based quadrotor are developed. The optimal control actions are calculated in each iteration by means of an optimal control algorithm based on the non‐linear model of the quadrotor, considering some aerodynamic effects. Control algorithm implementation and simulation tests are executed on a smartphone using the CasADi framework. In addition, a technique for estimating the energy consumed based on control signals is presented. NMPC controller performance was compared with other works developed towards the con‐ trol of quadrotors, based on an H∞ controller and an LQI controller, and using three predefined trajectories, where the NMPC average tracking error was around 50% lower, and average estimated power and energy consumption slightly higher, with respect to the H∞ and LQI controllers.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Based on the Euler angles parametrization, a new method for the attitude control of a vertical take-off and landing (VTOL) quadrotor aircraft is proposed. It relies on the combination of the backstepping technique and a nonlinear robust PI controller. The integral action gain is nonlinear and based on a switching function that allows a robust behavior for the overall control law. One of the strengths of the proposed approach is its robustness with respect to plant parameters uncertainties. The proposed approach has been tested in simulation and in real time and shows good performance.
Quadrotors represent an effective class of aerial robots because of their abilities to work in small areas. We suggested in this research paper to develop an algorithm to control a quadrotor, which is a nonlinear MIMO system and strongly coupled, by a linear control technique (PID), while the parameters are tuned by the Genetic Algorithm (GA). The suggested technique allows a decentralized control by decoupling the linked interactions to effect angles on both altitude and translation position. Moreover, the using a meta-heuristic technique enables a certain ability of the system controllers design without being limited by working on just the small angles and stabilizing just the full actuated subsystem. The simulations were implemented in MATLAB/Simulink tool to evaluate the control technique in terms of dynamic performance and stability. Although the controllers design (PID) is simple, it shows the effect of the proposed technique in terms of tracking errors and stability, even with large angles, subsequently, high velocity response and high dynamic performances with practically acceptable rotors speed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.