Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  quadcopter
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2017
|
tom z. 75
25--26
EN
In the paper, the problem of adaptive control of the asymmetric quadcopter’s motion along a given trajectory was solved. In addition, a recursive method for identifying model parameters was chosen. The methods were compared by standard deviation based on the criterion of inaccurate knowledge of the model’s parameters. The paper shows that the method works effectively in the selected conditions.
2
100%
EN
Teleoperation of unmanned aerial vehicles often demands extensive training. Yet, even well trained pilots are prone to mistakes, resulting frequently in collisions of the vehicle with obstacles. This paper presents a method to assist the tele-operation of a quadrotor using an obstacle avoidance approach. In particular, rough map of the nearby environment is constructed using sonar sensors. This map is constructed using FastSLAM to allow tracking of the vehicle position with respect to the map. The map is then used to override operator commands that may lead to a collision. An unknown and GPS denied environment is considered. Experimental results using the USARsim simulator are presented.
EN
Quadcopter unmanned aerial vehicle is a multivariable, coupled, unstable, and underactuated system with inherent nonlinearity. It is gaining popularity in various applications and has been the subject of numerous research studies. However, modelling and controlling a quadcopter to follow a trajectory is a challenging issue for which there is no unique solution. This study proposes an optimal hybrid quadcopter control with MPC-based backstepping control for following a reference trajectory. The outer-loop controller (backstepping controller) regulates the quadcopter’s position, whereas the inner-loop controller (Model Predictive Control) regulates its attitude. The translational and rotational dynamics of the quadcopter are analyzed utilizing the Newton-Euler method. After that, the backstepping controller (BC) is created, which is a recurrent control method according to Lyapunov’s theory that utilizes a genetic algorithm (GA) to choose the controller parameters automatically. In order to apply a linear control technique in the presence of nonlinearities in the quadcopter dynamics, Linear Parameter Varying (LPV) Model Predictive Control (MPC) structure is developed. Simulation validated the dynamic performance of the proposed optimal hybrid MPC-based backstepping controller of the quadcopter in following a given reference trajectory. The simulations demonstrate the fact that using a command control input in trajectory tracking, the proposed control algorithm offers suitable tracking over the assigned position references with maximum appropriate tracking errors of 0.1 m for the X and Y positions and 0.15 m for the Z position.
PL
Celem pracy jest budowa użytkowego modelu matematycznego quadrocoptera (QC) z uwzględnieniem urządzeń wykonawczych (UW) oraz identyfikacja jego parametrów. Zadanie identyfikacji sprowadzono do rozwiązania trzech zadań optymalizacji. Wynikiem prac jest model QC uwzględniający wpływ zmian napięcia zasilania na działanie UW.
EN
The goal of the paper is to deliver the utility model of quadcopter (QC) dynamics. The focus is on including the information of powersource voltage drop in actuator system model and its parameter identification. The identification problem is initially set up as an optimisation task in function space due to the impact of the actuators. Under the stated assumptions regarding the actuator system model the identification problem is consequently decomposed into three independent optimisation tasks defined in the model parameter space. The designed laboratory experiments deliver inputoutput data sets used to solve the proposed optimisation tasks. Solving the optimisation tasks results in an utility model for control design purposes that encompasses the nonlinearity of the actuator system and the effects of the powersource voltage drop. The latter is obtained by interpolation of the discrete results into the continuous voltage domain by line fitting under the stated assumption. The obtained model features are considered key factors for the control system design to follow in the future work.
EN
Unmanned aerial vehicle (UAV) is a typical aircraft that is operated remotely by a human operator or autonomously by an on-board microcontroller. The UAV typically carries offensive ordnance, target designators, sensors or electronic transmitters designed for one or more applications. Such application can be in the field of defence surveillance, border patrol, search, bomb disposals, logistics and so forth. These UAVs are also being used in some other areas, such as medical purposes including for medicine delivery, rescue operations, agricultural applications and so on. However, these UAVs can only fly in the sky, and they cannot travel on the ground for other applications. Therefore, in this paper, we design and present the novel concept-based UAV, which can also travel on the ground and rough terrain as an unmanned ground vehicle (UGV). This means that according to our requirement, we can use this as a quadcopter and caterpillar wheel–based UGV using a single remote control unit. Further, the current study also briefly discusses the two-dimensional (2D) and three-dimensional (3D) SolidWorks models of the novel concept-based combined vehicle (UAV + UGV), together with a physical model of a combined vehicle (UAV + UGV) and its various components. Moreover, the kinematic analysis of a combined vehicle (UAV + UGV) has been studied, and the motion controlling kinematic equations have been derived. Then, the real-time aerial and ground motions and orientations and control-based experimental results of a combined vehicle (UAV + UGV) are presented to demonstrate the robustness and effectiveness of the proposed vehicle.
EN
The application of quadcopter and intelligent learning techniques in urban monitoring systems can improve flexibility and efficiency features. This paper proposes a cloud-based urban monitoring system that uses deep learning, fuzzy system, image processing, pattern recognition, and Bayesian network. The main objectives of this system are to monitor climate status, temperature, humidity, and smoke, as well as to detect fire occurrences based on the above intelligent techniques. The quadcopter transmits sensing data of the temperature, humidity, and smoke sensors, geographical coordinates, image frames, and videos to a control station via RF communications. In the control station side, the monitoring capabilities are designed by graphical tools to show urban areas with RGB colors according to the predetermined data ranges. The evaluation process illustrates simulation results of the deep neural network applied to climate status and effects of the sensors’ data changes on climate status. An illustrative example is used to draw the simulated area using RGB colors. Furthermore, circuit of the quadcopter side is designed using electric devices.
7
63%
EN
The paper presents an adaptive control algorithm for an asymmetric quadcopter. For determining the control algorithm, the identification was made, and an identification algorithm is presented in the form of a recursive method. The control method is realized using inverse dynamics, full state feedback and finally adaptive control method. The algorithms for the off-line and on-line identification of quadcopter model parameters are also presented. The paper shows the effectiveness of the selected algorithm on the example of the movement along a given trajectory. Finally, recommendations of the application of these different methods are made.
PL
W pracy przedstawiono algorytm sterowania adaptacyjnego dla asymetrycznego quadrocoptera. W celu określenia sterowania zrealizowano identyfikację parametrów i przedstawiono algorytm identyfikacji w formie metody rekurencyjnej. Metoda sterowania realizowana jest z wykorzystaniem dynamiki odwrotnej, przesuwania biegunów oraz sterowania adaptacyjnego. Zaprezentowano algorytmy identyfikacji parametrów modelu quadrocoptera w trybie off-line i on-line. W artykule przedstawiono skuteczność wybranych algorytmów na przykładzie ruchu wzdłuż podanej trajektorii. Na zakończenie artykułu przedstawiono zalecenia dotyczące stosowania różnych metod sterowania.
|
|
tom R. 22, nr 12
157--162, CD
PL
W artykule przedstawiono rozważania matematyczne dotyczące analizy dynamiki ruchu platformy latającej – quadocopter. Omówione w pracy zależności matematyczce zostały poddane badaniom symulacyjnym przeprowadzonych w środowisku Matlab/Simulink, w którym odwzorowano model obiektu latającego.
EN
This paper presents mathematical considerations for the analysis of the dynamics of movement of the platform year - quadocopter. Depending discussed in the been tested simulation conducted in an environment Matlb / Simulink, in which mapped model of a flying object.
PL
W artykule omówiono prosty algorytm sterowania platformą latającą złożoną z czterech silników i śmigieł o stałym skoku. Stanowi to dużą zaletę w porównaniu do helikopterów gdzie wymagane są skomplikowane i drogie śmigła o zmiennym skoku. W algorytmie sterowania platformy zastosowano kontroler PID. Do pomiaru położenia platformy latającej wykorzystywany jest czujnik przyśpieszenia oraz żyroskop. Informacje z tych dwóch czujników są integrowane za pomocą filtracji Kalmana w celu uzyskania lepszej estymacji położenia platformy.
EN
The article presents a simple algorithm for controlling a quadcopter composed of four engines an constant pitch propellers. The algorithm is based on a PID controller. The posture of the quadcopter is estimated on the base of an accelerometer and a gyroscope. The data is integrated by a Kalman filter to achieve accurate estimates of the vehicle posture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.