Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  przestrzeń modularna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On the strong convergence in some sequence spaces
100%
EN
The purpose of this paper is to introduce and study an idea of lacunary strong (A,phi)-convergence with respect to a modulus function. In coures of these investigations we study some connections between (A, phi)-strong summability of sequences and lacunary strong convergence with respect to a modulus or lacunary statistical convergence.
2
Content available remote An application of modular spaces to approximation problems, VII
100%
|
2000
|
tom Vol. 33, nr 4
805-814
3
Content available remote An application of modular spaces to approximation problems, IX
88%
EN
By means of terms of a sequence (pn), where pn, n = l,2,..., are pseudomodulars, and by means of an infinite matrix A = [amn ] of non-negative numbers we shall construct the modular spaces XpAos' and Xp^os. Then we shall approximate elements of these spaces by means of terms of a sequence (p.), where p, i = l,2,..., are pseudomodulars. In particular, we will investigate the special cases when pn and pt are singular integrals.
4
Content available remote Approximation with respect to a measure in a modular space, VI
75%
EN
Elements of a modular subspace of [...] are approximated by certain singular integrals.
5
Content available remote On the generalized Nakano sequence space
75%
|
2007
|
tom Vol. 40, nr 4
885-893
EN
The purpose of this note is to define and to investigate the generalized Nakano sequence space A(p) and to show that the sequence space A(p) eąuipped with the Luxemburg norm is rotund and posses property-H when p = (pk) is bounded with pk > 1 for all k is an element of N.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.