We introduce a new class of sets called u-m-open sets which are defined on a family of sets satisfying m-structures with the property of being closed under arbitrary union. The sets enable us to obtain some unified properties of certain types of generalizations of Lindelof spaces.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study the possibility of extending any bounded Baire-one function on the set of extreme points of a compact convex set to an affine Baire-one function and related questions. We give complete solutions to these questions within a class of Choquet simplices introduced by P. J. Stacey (1979). In particular we get an example of a Choquet simplex such that its set of extreme points is not Borel but any bounded Baire-one function on the set of extreme points can be extended to an affine Baire-one function. We also study the analogous questions for functions of higher Baire classes.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements "2R is countably compact" and "2R is compact".
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Sarsak [On μ-compact sets in μ-spaces, Questions Answers Gen. Topology 31 (2013), no. 1, 49-57] introduced and studied the class of μ-Lindelöf sets in μ-spaces. Mustafa [μ-semi compactness and μ-semi Lindelöfness in generalized topological spaces, Int. J. Pure Appl. Math. 78 (2012), no. 4, 535-541] introduced and studied the class of μ-semi-Lindelöf sets in generalized topological spaces (GTSs); the primary purpose of this paper is to investigate more properties and mapping properties of μ-semi-Lindelöf sets in μ-spaces. The class of μ-semi-Lindelöf sets in μ-spaces is a proper subclass of the class of μ-Lindelöf sets in μ-spaces. It is shown that the property of being μ-semi-Lindelöf is not monotonic, that is, if (X, μ) is a μ-space and A ⊂ B ⊂ X, where A is μB-semi-Lindelöf, then A need not be μ-semi-Lindelöf. We also introduce and study a new type of generalized open sets in GTSs, called ωμ-semi-open sets, and investigate them to obtain new properties and characterizations of μ-semi-Lindelöf sets in μ-spaces.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.