W publikacji przedstawiono analizę zmian naturalnej przepuszczalności skał zbiornikowych miocenu w strefie przyodwiertowej na podstawie wartości wskaźnika efektu brzegowego (skin-effect) w oparciu o wyniki badań rurowymi próbnikami. Wybrane przykłady tej analizy zestawiono w tabeli 1, sformułowano spostrzeżenia szczegółowe oraz wnioski końcowe.
EN
Natural permeability of reservoir rocks in the Miocene reservoir rocks in the near-well area was analysed on the basis of the skin-effect indices obtained by DST. The results of the analysis were exemplified in Table 1. Detailed observations and final conclusions close the paper.
Zbadano zdolność sztucznych sieci neuronowych SNN do oceny przepuszczalności absolutnej skał. Do tego celu wykorzystano dane z pięciu otworów wiertniczych, zlokalizowanych w północno-wschodniej części zapadliska przedkarpackiego: Dzików 16, 17, 20 oraz Wola Obszańska 10 i 15. Modele neuronowe stworzono na podstawie wyników badań laboratoryjnych próbek skał pobranych w wymienionych otworach, profilowań geofizyki otworowej oraz wyników kompleksowej interpretacji tych profilowań. Otrzymano SSN, służącą do odtwarzania wartości przepuszczalności całkowitej, określonej w laboratorium. Następnie model neuronowy wdrożono do estymowania przepuszczalności w otworze wiertniczym DZ17, przenosząc tym samym rozpoznane wcześniej zależności na nowy zbiór danych. Sieci neuronowe mogą stanowić alternatywę dla klasycznych metod wyznaczania przepuszczalności skał.
EN
The absolute rock permeability was determinated with the use of artificial neural networks (ANN). Authors checked up ANN ability to determine permeability on the data from five borehole locked in northeastern part of the Carpathian Foredeep: Dzików 16, 17, 20 and Wola Obszańska 10 and 15. Neural models were built on the basis of results from laboratory tests, well logs data and the results of the comprehensive interpretation. ANN provided good results in estimating laboratory permeability. The best neural network was applied on similar data set from DZ17 borehole to show that complicated links between input variable and absolute permeability can be used for prediction of permeability from another data. It is hard to find deft deterministic model for permeability estimation so neural model gained in training process is an alternative method.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.