Dose delivery in proton beam therapy requires significant effort for in vivo verification. PET is considered as one of the most precise methods for such verification using short- -lived radionuclides. One of the newer approaches in proton therapy is based on FLASH therapy, when a 40-60 Gy absorbed dose could be delivered in millisecond time intervals. For this very promising type of therapy a very important task is to reliably identify the beam stopping position within the corresponding organ with a tumor in the patient’s body. This could be done if the beam proton energy in the body is still above the threshold of the corresponding nuclear reaction, in the outgoing channel of which will be produced positron-emitting nuclei. In this work we consider the production of oxygen radionuclides emitting positrons 14O (the half-life 70.6 s) and 15O (the half-life 122.2 s). Using the TALYS code, we calculated cross sections of proton-induced nuclear reactions on 14N and 16O, leading to the formation of 14,15O with the application of a well- -working optical model. In addition, we calculated total gamma-production and average gamma-emission energy for incident proton energy 150 MeV.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.