The focus of the present research endeavour is to propose a single channel Electromyogram (EMG) signal driven continuous terrain identification method utilizing a simple classifier. An iterative feature selection algorithm has also been proposed to provide effective information to the classifiers. The proposed method has been validated on EMG signal of fifteen subjects and ten subjects for three and five daily life terrains respectively. Feature selection algorithm has significantly improved the identification accuracy (ANOVA, p-value < 0.05) as compared to principal component analysis (PCA) technique. The average identification accuracies obtained by Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Neural Network (NN) classifiers are 96.83 ± 0.28%, 97.45 ± 0.32% and 97.61 ± 0.22% respectively. Subject wise performance (five subjects) of individually trained classifiers shows no significant degradation and difference in performance among the subjects even for the untrained data (ANOVA, p-value > 0.05). The study has been extended to dual muscle approach for terrain identification. However, the proposed algorithm has shown similar performance even with the single muscle approach (ANOVA, p-value > 0.05). The outcome of the proposed continuous terrain identifi-cation method shows a pronounced potential in efficient lower limb prosthesis control.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The use of surface electromyogram (sEMG) has grown in the field of gait analysis, prostheses and exoskeleton. Surface electromyogram can directly reflect the human intention for locomotion modes and can be used as a source of control for lower limb prosthesis. The variations factors such as non-Gaussian nature of sEMG signal and mobility of amputees have been observed to degrade the activity recognition performance. This study investigates the properties of the sEMG signal with the purpose of determining the discriminant features to classify the feature space into various activities especially in the context of amputees. To address the variations in activity recognition performance, this study proposed the magnitude of bispectrum as a novel feature extraction method that is invariant to the variations factors and an unsupervised feature reduction method was used to extract the discriminant features. Furthermore, sEMG signals from eleven wearable sensors located on the lower limb muscles were recorded from six subjects including four able-bodies, one unilateral transti-bial, and one unilateral transfemoral amputee during walking and ramp activities. Distinct muscles were selected using the L1-norm method. Effective classifier namely support vector machine and linear discriminant analysis were used to classify the multi-class sEMG signal patterns. The experimental results consistently showed an average accuracy of 99.7%. Further evaluation on three different types of prostheses revealed that the proposed method is more robust compared to the existing methods. The promising results of this study can be applied potentially in the control of lower limb wearable devices such as prostheses/ exoskeletons.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.