Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It is proved that the Musielak-Orlicz sequence space of Bochner type l_f(X) has property (B) if and only if both spaces lip and X have it also. It is considered the case of Luxemburg and Orlicz norm as well. In particular, the Lebesgue-Bochner sequence space l_p(X) has property (B) iff X has property (B)). As a corollary we also conclude that in Musielak-Orlicz sequence spaces equipped with the Luxemburg (Orlicz) norm property (B), nearly uniform convexity, drop property and reflexivity are in pairs equivalent. Such a theorem was proved directly in [4] in the case of Orlicz sequence space.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.