We present upper and lower estimates of the error of approximation of periodic functions by Fejér means in the Lebesgue spaces Lp2π. The estimates are given in terms of a K-functional for 1≤p≤∞ and in terms of the first modulus of continuity in the case 1
In this paperwe will prove the Korovkin type theorem for modified Szász-Mirakyan operators via Astatistical convergence and the power summability method. Also we give the rate of the convergence related to the above summability methods, and in the last section, we give a kind of Voronovskaya type theorem for A-statistical convergence and Grüss-Voronovskaya type theorem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.