Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  prognozowanie wytwarzanej energii
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł przedstawia problem prognozowania generacji energii elektrycznej w małych systemach fotowoltaicznych (PV). Celem opracowanych długoterminowych prognoz jest możliwość poprawnego zarządzania systemem elektroenergetycznym poprzez podejmowanie odpowiednich działań zachowawczych. Przeanalizowano czynniki atmosferyczne wpływające na pozyskiwanie energii elektrycznej w systemach fotowoltaicznych. Dokonano porównania wybranych modeli prognostycznych z wykorzystaniem uczenia maszynowego, m.in. sieci neuronowych MLP oraz metody wektorów nośnych SVM. Zostały wybrane mierniki pozwalające określić trafność (dokładność) prognoz. Określenie jakości prognoz bazowało na stanach faktycznych pogody, a nie na jej prognozie. Przedstawiono sposób przygotowania danych do utworzenia modeli prognostycznych i zaprezentowano najlepsze modele regresyjne. Do tego celu wykorzystano bibliotekę Scikit-learn umożliwiającą tworzenie skryptów w języku Python. W rozpatrywanym zespole fotowoltaicznym najlepsze rezultaty uzyskano dla modeli MLPRegressor, CatBoostRegressor i SVR. Wykorzystano rzeczywiste dane pomiarowe z systemu paneli ustawionych optymalnie o mocy 3,0 kWp. Dla modelu MLPRegressor osiągnięto największy współczynnik determinacji 0,605 oraz najmniejszy pierwiastek błędu średniokwadratowego 1,79 KWh dla średniej dziennej generacji energii elektrycznej w okresie od kwietnia do września 2022 r. wynoszącej 11,65 kWh.
EN
The article presents data analysis for predicting energy production in photovoltaic (PV) power plant systems. The purpose of long-term forecasts is to determine the effectiveness of preventive actions and manage the power system effectively. Climate variables affecting the production of electricity in photovoltaic systems were analyzed. Forecasting methods using machine learning techniques such as Multi-Layer Perceptron (MLP) neural networks and Support Vector Machine (SVM) were compared. In addition, metrics were selected to determine the quality of forecasts. Determining the quality of forecasts was based on the actual varying conditions, not on the weather forecast data. The way of data preparation to create forecasting models were presented and the models with the best metrics were selected. For this purpose, the Scikit-learn library was used to create scripts in Python. The best results were obtained for regression models: MLPRegressor, CatBoostRegressor and Support Vector Regression. Actual measurement data from a system of optimally-positioned panels with a power of 3.0 kWp were used. For the MLPRegressor model, the highest coefficient of determination 0.605 was achieved with the smallest root-mean-square error of 1.79 KWh.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.