Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  prognozowanie sprzedaży
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
nr 471
438-448
PL
Proces prognozowania często wzbudza wiele wątpliwości co do jego zasadności. Wskazanie odpowiedniej metody, która pozwoli na zbudowanie precyzyjnej prognozy, jest procesem wieloetapowym. Celem artykułu jest zaprezentowanie wyselekcjonowanych metod prognozowania sprzedaży na przykładzie wybranego preparatu farmaceutycznego. Do osiągnięcia założonego celu zastosowano metody ilościowe: metodę naiwną, model Wintersa oraz metodę jakościową: opinie kierownictwa. Jednoczesne wykorzystanie tych metod do ustalenia prognozy końcowej badanego produktu umożliwia uzyskanie bardziej precyzyjnych szacunków oraz uwzględnienie wielu różnorodnych czynników determinujących prognozę sprzedaży. Specyfika rynku farmaceutycznego kreuje potrzebę przełożenia uwarunkowań tego sektora na dobór właściwych metod prognozowania sprzedaży, co wymaga indywidualnego podejścia zarówno do pojedynczych preparatów, jak i grup produktów. Każda sytuacja prognostyczna może odróżniać się od pozostałych, dlatego należy rozpatrywać je oddzielnie i zwracać uwagę na wszystkie czynniki determinujące daną prognozę sprzedaży.
2
Content available remote Modele ARIMA w prognozowaniu sprzedaży
100%
PL
W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich wykorzystanie do prognozowania jednowymiarowych szeregów czasowych. Wykorzystano jedno z ogólnie stosowanych podejść zaproponowane przez Boxa i Jenkinsa. Opisano i przedyskutowano kolejne etapy tworzenia modelu na przykładzie danych dotyczących przedsiębiorstwa handlowego typu cash & carry oraz przedsiębiorstwa produkcyjnego.
EN
The paper presents construction methodology of ARIMA models and their application in one-dimensional time series forecasting. The Box and Jenkins approach, being one of the widely used, has been employed. Consecutive phases of the model constructing have been described and discussed on the basis of a cash & carry type of trade as well as productive enterprise.
|
2014
|
tom nr 6
14299--14304, CD 6
PL
Przy rozliczeniach terminowych powszechnym zjawiskiem jest fakt, że zamówienia składane są w dużych odstępach czasu na stosunkowo dużą kwotę. Następnie następuje okres sprzedaży zamówionych produktów i akumulacja gotówki na spłatę zobowiązań. Często zdarza się, że pewnych produktów zaczyna już brakować, ale nie składa się zamówień oczekując na zebranie kwoty wystarczającej do spłaty poprzedniej zaległości zezwalającej na ponowny zakup z odroczonym terminem płatności. Odnotowujemy więc podwójną stratę. Zupełnie inaczej wygląda sytuacja w przypadku, gdy operujemy zamówieniami w krótkim odstępie czasu – maksymalne wykorzystanie obrotu gotówki gwarantuje przede wszystkim uniknięcie braków w asortymencie. Celem artykułu było zbudowanie modelu szeregu czasowego umożliwiającego predykcję wielkości sprzedaży w kolejnych dniach w wybranym przedsiębiorstwie. Wysokość obrotu dziennego jest czynnikiem mającym największy wpływ na efektywne zarządzanie gotówką i towarem dlatego też prognoza jest tak istotna. W badaniach wykorzystano modele SARIMA oraz sztuczne sieci neuronowe.
EN
The research objective was to build a time series models for forecasting sales. In the paper, the analysis of the possibility of using SARIMA models as well as artificial neural networks to forecast demand level at some trading company were introduced. The results has satisfied the authors.
|
|
tom T. 35, z. 1
129--140
EN
In order to prepare a coal company for the development of future events, it is important to predict how can evolve the key environmental factors. This article presents the most important factors influencing the hard coal demand in Poland. They have been used as explanatory variables during the creation of a mathematical model of coal sales. In order to build the coal sales forecast, the authors used the ARMAX model. Its validation was performed based on such accuracy measures as: RMSE, MAPE and Theil’s index. The conducted studies have allowed the statistically significant factors out of all factors taken into account to be identified. They also enabled the creation of the forecast of coal sales volume in Poland in the coming years. To maintain the predictability of the forecast, the mining company should continually control the macro environment. The proper demand forecast allows for the flexible and dynamic adjustment of production or stock levels to market changes. It also makes it possible to adapt the product range to the customer’s requirements and expectations, which, in turn, translates into increased sales, the release of funds, reduced operating costs and increased financial liquidity of the coal company. Creating a forecast is the first step in planning a hard coal mining strategy. Knowing the future needs, we are able to plan the necessary level of production factors in advance. The right strategy, tailored to the environment, will allow the company to eliminate unnecessary costs and to optimize employment. It will also help the company to fully use machines and equipment and production capacity. Thanks to these efforts, the company will be able to reduce production costs and increase operating profit, thus survive in a turbulent environment.
PL
Aby przygotować się na rozwój przyszłych wydarzeń z niezbędnym wyprzedzeniem, należy wiedzieć, w jakim kierunku mogą podążać trendy rozwoju kluczowych czynników otoczenia wpływających na spółkę węglową. Artykuł prezentuje najistotniejsze czynniki wpływające na popyt na węgiel kamienny w Polsce. Zostały one wykorzystane jako zmienne objaśniające przy utworzeniu modelu matematycznego wielkości sprzedaży węgla w Polsce. W celu jego zbudowania posłużono się modelem ARMAX. Walidacja modelu została przeprowadzona w oparciu o takie miary dokładności jak: RMSE, MAPE i współczynnik Theila. Badania te umożliwiły na wyznaczenie spośród wszystkich branych pod uwagę czynników statystycznie istotnych oraz na utworzenie prognozy wielkości sprzedaży tego paliwa w Polsce w najbliższych latach. Aby trafność prognozy mogła zostać utrzymana, przedsiębiorstwo powinno kontrolować makrootoczenie. Właściwa prognoza popytu pozwala na elastyczne oraz dynamiczne dostosowanie poziomu produkcji czy zapasów do zmian zachodzących na rynku. Umożliwia ona także dostosowanie produkowanego asortymentu do wymagań i oczekiwań odbiorców, co z kolei przekłada się na zwiększenie sprzedaży, uwolnienie środków finansowych, zmniejszenie kosztów działalności przedsiębiorstwa oraz wzrost płynności finansowej kopalń. Stworzenie prognozy to pierwszy krok w planowaniu strategii wydobycia węgla kamiennego. Znając przyszłe potrzeby, jesteśmy w stanie z wyprzedzeniem zaplanować niezbędny poziom czynników produkcji. Odpowiednia strategia to taka, która jest dostosowana do otoczenia, pozwoli przedsiębiorstwu wyeliminować niepotrzebne koszty i zoptymalizować zatrudnienie. Pomoże to również firmie w pełni korzystać z maszyn i urządzeń oraz zdolności produkcyjnych. Dzięki tym staraniom firma będzie mogła obniżyć koszty produkcji i zwiększyć zysk operacyjny, dzięki czemu przetrwa w niespokojnym oraz zmiennym otoczeniu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.