The performance of the No-till treatment after systematic surface tillage with crop rotation allowed the formation of stocks of productive moisture at the average level of 155 mm, which corresponded to the stocks of moisture after ploughing and were significantly higher (by 10–15 mm) than those under systematic surface tillage and No-till treatment after the ploughing. During the April-June and June-July periods, ploughing consumed 67% and 33% of the spring moisture supply, respectively; after surface tillage it was 62% and 38%, while after No-till following surface tillage it was 55% and 45%. This indicates a more optimal use of productive moisture stocks compared to ploughing, where moisture was used 1.2 times more intensively during the vegetative growth phase of grain and leguminous crops in the crop rotation. The highest consumption of productive water stocks during the April-July period was during ploughing at 62–69 mm and during surface tillage and No-till after surface tillage at 47–48 mm, which is 1.4 times less. The content of water-resistant aggregates 5–1 mm in 0–30 cm layer of soil under tillage was 3.31%, whereas under surface tillage and No-till treatment in different combinations – 1.87–2.21 times more. Increasing the content of water-resistant aggregates of the most valuable size, with increasing of humus content in 0–20 cm layer of soil by 0.07% under surface tillage and No-till treatment on its background led to improvement of crop moisture regime in agrocenosis by 10–15%.
Under climate change, the issue of selection and correction of crop cultivation systems in the zone of moisture deficit and risky farming to ensure profitability of production is still topical. In particular, crop rotations are a practice aimed at increasing resistance of soil systems to abiotic and biotic stresses in the zone of moisture deficit. Therefore, the purpose of the research is to identify spatio-temporal regularities of vegetative formation of water balance in winter wheat agrocenoses depending on a pre-crop according to the unified BBCH scale. Spatio-temporal processes of vegetation and water balance formation in winter wheat agrocenosis depending on a pre-crop according to the unified BBCH scale were examined on the basis of the data of decoded satellite image series of the spacecraft Sentinel and calculation of the NDWI and the NDVI values. The research was conducted in the natural-climatic conditions of the Steppe zone of Ukraine, in the territory of Yelanets district, Mykolaiv region, during the vegetative phase of winter wheat variety Driada 1: autumn 2021 and winter, spring and the beginning of summer 2022. It was established that activeness of water balance formation in winter wheat agrocenosis with pea as a pre-crop according to seasonal-phenological stages of plant growth is 3.0–9.0 times higher than with a grain crop (spring barley) and sunflower as pre-crops. In particular, with pea as a pre-crop, the NDVI vegetation of winter wheat plants is 1.6–1.7 times more intensive, the rate of moisture supply NDWI in the plant leaf at the macro-stages BBCH 10–61 is 1.54 and 1.82 times higher, productivity is 1.43–1.56 times higher. We observed a 30.5–34.3% reduction in water consumption for the formation of a ton of winter wheat grain with pea as a pre-crop in comparison with other pre-crops that resulted in an increase in productive moisture reserves at the end of vegetation in a meter soil layer by 20%. It was established that using pea as a pre-crop has economic and environmental benefits that manifest themselves in increasing resistance of soil systems, a reduction in environmental pollution and a rise in profitability of production.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.