The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger) is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation. The paper presents a model of thermal and flow processes in BHE consisting of two analytical models separately-handling processes occurring inside and outside of borehole. A quasi-three-dimensional model formulated by Zeng was used for modelling processes taking place inside the borehole and allowing to determine the temperature of the fluid in the U-tube along the axis of BHE. For modelling processes occurring outside the borehole a model that uses the theory of linear heat source was selected. The coupling parameters for the models are the temperature of the sealing material on the outer wall of the borehole and the average heat flow rate in BHE. Experimental verification of the proposed model was shown in relation to BHE cooperating with a heat pump in real conditions.
W pracy przedstawiono rezultaty obliczeń numerycznych pola temperatury w otoczeniu rur gruntowego wymiennika ciepła pompy grzejnej oraz jednostkowego strumienia ciepła pobieranego od gruntu. Przeanalizowano wpływ ruchu wody gruntowej na strumień ciepła przejmowanego od gruntu w przykładowym wymienniku z rurami poziomymi.
EN
Results of numerical calculations for underground heat exchanger of heat pump are presented in the paper. Determination of the temperature distributions in the domain neighbouring pipes, as well as heat flux densities transferred from the ground, were the main aim of the calculations. Influence of the moisture flow on the heat flux transferred from the ground in the exemplary horizontal exchanger is also analysed.
W artykule przedstawiono model matematyczny procesów cieplnych oraz przepływowych zachodzących podczas koksowania wsadu węglowego w komorze koksowniczej. Model uwzględnia przepływ ciepła na drodze dyfuzji, konwekcji oraz promieniowania. Jednocześnie zamodelowano lokalne procesy odparowania oraz skraplania wilgoci, kinetykę uwalniania części lotnych wraz z towarzyszącymi im efektami energetycznymi. Uzyskane wyniki modelowania pokrywają się z pomiarami eksperymentalnymi wykonanymi na doświadczalnej instalacji pieca z ruchomą ścianą. Model matematyczny opracowano w Instytucie Chemicznej Przeróbki Węgla w Zabrzu w ramach projektu Inteligentna Koksownia.
EN
Within article a mathematical model of thermal and flow process occurring within coking chamber is presented. The model encompasses coupled diffusive, convective and radiative heat transfer. At the same time range of aspects associated with carbonization process such as: water evaporation and condensation, kinetics describing release of volatiles accompanied with energy effect are considered. Obtained results coincident well with measurement conducted on the experimental coking chamber. The mathematical model was developed at Institute for Chemical Processing of Coal as a part of the project entitled "Smart Coke Plant Meeting the Requirements of Best Available Techniques".
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.