Przeprowadzono analizę możliwości odzysku ciepła procesowego na modelowej linii technologicznej cynkowania ogniowego. Wykazała ona, że możliwy jest odzysk energii w pracy cynkowni, zarówno w okresie letnim, jak i w zimowym. Odzysk ciepła procesowego możliwy jest dla trzech węzłów technologicznych: pieca cynkowniczego, chłodni wodnej i poczekalni wsadów pomiędzy cynkowaniem a rozformowaniem. Właściwe wykorzystanie ciepła procesowego umożliwia zmniejszenie jego strat i podnosi efektywność ekonomiczną całego procesu cynkowania ogniowego.
EN
Conducted was an analysis of a possibility to recover the process heat from a model hot-dip galvanizing technological line. It has shown that it is possible to recover energy from a galvanizing plant work both during summer and winter periods. The process heat recovery is possible for three technological nodes: zinc coating furnace, cooling tank and charge waiting area between galvanizing and unforming. Proper utilization of the process heat enables reduction of its losses and increases economic efficiency of the whole hot-dip galvanizing process.
The boiler is an enclosed vessel that transfers the energy from fuel combustion or electricity into hot water or steam. Then, this hot water or pressurized steam is used for transferring the heat to a certain heat process. Usually, the required hot water or steam keeps on varying throughout the day which also may be implied on the daily or monthly load. Therefore, several configurations of connecting the boiler into the solar heating system ensure the temperature of the final output. The boiler can be connected in series or parallel to improve the efficiency of the overall process as well as to reduce the running costs. This paper presents a simulation study of a solar heating system for industrial processes. Two flow-heater system configurations are designed for covering the heat demand of a pasteurising factory existing in Budapest, Hungary. The configuration “A” consists of a solar heating system for hot water preparation using in series flow heater configuration. While configuration “B” consists of the same solar system but with a parallel flow heater configuration. These system configurations are modelled using T*sol software for evaluating the system performance under the Hungarian climate from five different aspects: required collector area, glycol ratio, volume flow rate, relative tank capacity, and tank height-to-diameter ratio. According to the optimum design parameters, in series configuration is better than parallel by 3.14% at 45 m² collector area, 0.45% at 25% glycol ratio, 0.42% at 50 l/h · m² volume flow rate, 2.05% at 50 l/m² relative tank capacity, and 0.42% at 1.8 tank height-to-diameter ratio respectively. The results show that in series configuration is better in terms of solar fractions than parallel configuration from all five aspects.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.