W artykule rozważono wpływ procesu uczenia na tempo zachodzenia przemian ewolucyjnych. Zjawisko polegające na tym, że wprowadzenie do sytemu ewolucyjnego procesu uczenia może zarówno przyspieszać, jak i spowalniać ewolucję, jest od dawna znane w naukach przyrodniczych i określane jest mianem efektu Baldwina. Natomiast brak jest ogólnej teorii opisującej rozważane zjawiska w sposób ilościowy. W artykule przedstawiono teoretyczną analizę wpływu uczenia stałego na tempo ewolucji. Uzyskane wyniki zostały dodatkowo potwierdzone przeprowadzonymi przez autora symulacjami numerycznymi, z których wynika, że w systemach ewolucyjnych z dodatnią i monotoniczną funkcją celu wprowadzenie uczenia stałego zawsze powoduje spowolnienie ewolucji.
EN
The paper deals with the influence of learning on the evolution rate. It is a well-known fact that learning can under some circumstances accelerate or decelerate evolution, but there is no general theory that could explain these phenomena. The work [11] proposes a mathematical method with use of which one can determine whether the evolution will be accelerated or decelerated by learning for a monotonic and positive fitness function. This mathematical method is based on analysis of the fitness function logarithm second derivative. In the paper there is presented an experimental evolu-tionary system for which it was proved that the fitness function logarithm second derivative is negative. This fact causes that introduction of the constant learning to such a system must lead to deceleration of evolution. However, the mathematical method presented in [11] does not allow for any quantitative analysis of this phenomenon. Numerical experiments were conducted by the author of this paper in order to confirm the theoretical results obtained before. The simulation results of impact of learning on the evolution rate are shown in Figs. 1- 5. It can be noted that the deceleration of evolution, especially in the case of lower number of evolutionary algorithm generations, is relatively large. The impact of mutation intensity on the evolution rate was also examined. It was shown that increase in the mutation intensity accelerates the evolution significantly. The paper is organised as follows: Section 1 is the introduction, Section 2 presents the outline of the mathematical method based on gain function analysis, Section 3 discusses the results of numerical simulations, Section 4 gives the concluding remarks..
This article presents one possibility to employ Moodle, the free e-Leaning platform, to organize learning understood as a process. Behavioral approach and application to massive courses are assumed. A case study is presented, where the introduction of Moodle resulted in better student performance in homework.
PL
Artykuł przedstawia możliwość wykorzystania platformy e-Learningowej Moodle do organizacji nauki, rozumianej jako proces. Zakłada się podejście behawioralne i kursy z wieloma uczestnikami. Przedstawiono przypadek w którym zastosowanie Moodle zaowocowało lepszymi wynikami studentów w składaniu prac domowych.
Artykut został poświęcony zagadnieniom badania wpływu procesu uczenia na zachowanie się systemów ewolucyjnych. Wzajemne interakcje pomiędzy procesami ewolucyjnymi a procesem uczenia są obecnie jeszcze słabo poznane. Wiadomo jest, że wprowadzenie uczenia do systemu ewolucyjnego może w pewnych warunkach prowadzić zarówno do przyspieszenia, jak i spowolnienia tempa ewolucji. Brak jest jednak ogólnej teorii tłumaczącej tego typu zjawiska i potrafiącej je opisać w sposób ilościowy. W artykule rozpatrzono przypadek uczenia stałego z dodatnią i monotoniczną funkcją dopasowania. Opierając się na wcześniejszych rezultatach można przeprowadzić badanie znaku drugiej pochodnej logarytmu funkcji dopasowania i na tej podstawie wywnioskować, że wprowadzenie uczenia będzie powodowało w rozważanym systemie spowolnienie przebiegu ewolucji. Jednak ilościowa ocena tego zjawiska wymaga przeprowadzenia odpowiednich eksperymentów numerycznych. W artykule opisano przeprowadzone przez autora symulacje komputerowe systemu ewolucyjnego z monotoniczną funkcją celu. Przeprowadzone eksperymenty dobrze potwierdziły wcześniejsze rezultaty teoretyczne. Ponadto pokazano, że wprowadzenie do systemu uczenia stałego prowadzi do istotnego spowolnienia tempa zachodzenia procesów ewolucyjnych.
EN
The paper is devoted to the issues of examining the impact of learning process on the behavior of evolutionary systems. Mutual interactions between evolutionary processes and learning process are still weakly understood. However, it is a well-known fact that the introduction of learning into the evolutionary systems can both lead to acceleration or deceleration of evolution. But there is still a lack of general theory that could explain these phenomena in a quantitative manner. In the paper the case of constant learning with a monotonie and positive fitness function is examined. Basing on the former results one can examine the sign of the second derivative of logarithm of fitness function, which results the conclusion that learning should lead to deceleration of evolutionary processes. In order to confirm the theoretical results and asses the extent to which evolution is decelerated some numerical experiments were conducted by the author. In the paper the case of monotonie fitness function was examined during the numerical experiments that were conducted by the author. The numerical simulations, the results of which were presented in the paper, confirmed totally the former theoretical results.Moreover, it was proved that constant learning decelerates the evolutionary processes to the relatively great extent.
The main goal of the study will be to pay attention to technologization of the learning process and its social dimensions in the context of artificial intelligence. The reflection will mainly cover selected theories of learning and knowledge management in the organization and its broadly understood environment. Considering the sociological dimensions of these phenomena is supposed to lead to the emphasis on the importance of the security of the human-organization-device relationship. Due to the interdisciplinary nature of the issue, the article will include references to the concept of artificial intelligence and machine learning. Difficult questions will arise around the ideas and will become the conclusion of the considerations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.