Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  problem optymalizacji kombinatorycznej
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The fixed fleet heterogeneous open vehicle routing problem (HFFOVRP) is one of the most practical versions of the vehicle routing problem (VRP) defined because the use of rental vehicles reduces the cost of purchasing and routing for shipping companies nowadays. Also, applying a heterogeneous fleet is recommended due to the physical limitations of the streets and efforts to reduce the running costs of these companies. In this paper, a mixed-integer linear programming is proposed for HFFOVRP. Because this problem, like VRP, is related to NP-hard issues, it is not possible to use exact methods to solve real-world problems. Therefore, in this paper, a hybrid algorithm based on the ant colony algorithm called MACO is presented. This algorithm uses only global updating pheromones for a more efficient search of feasible space and considers a minimum value for pheromones on the edges. Also, pheromones of some best solutions obtained so far are updated, based on the quality of the solutions at each iteration, and three local search algorithms are used for the intensification mechanism. This method was tested on several standard instances, and the results were compared with other algorithms. The computational results show that the proposed algorithm performs better than these methods in cost and CPU time. Besides, not only has the algorithm been able to improve the quality of the best-known solutions in nine cases but also the high-quality solutions are obtained for other instances.
EN
Combinatorial optimization problems, such as travel salesman problem, are usually NPhard and the solution space of this problem is very large. Therefore the set of feasible solutions cannot be evaluated one by one. The simple genetic algorithm is one of the most used evolutionary computation algorithms, that give a good solution for TSP, however, it takes much computational time. In this paper, Affinity Propagation Clustering Technique (AP) is used to optimize the performance of the Genetic Algorithm (GA) for solving TSP. The core idea, which is clustering cities into smaller clusters and solving each cluster using GA separately, thus the access to the optimal solution will be in less computational time. Numerical experiments show that the proposed algorithm can give a good results for TSP problem more than the simple GA.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.