This paper investigates the use of kernel theory in two well-known, linear-based subspace representations: Principle Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (FLD). The kernel-based method provides subspaces of high-dimensional feature spaces induced by some nonlinear mappings. The focus of this work is to evaluate the performances of Kernel Principle Component Analysis (KPCA) and Kernel Fisher's Linear Discriminant Analysis (KFLD) for infrared (IR) and visible face recognition. The performance of the kernel-based subspace methods is compared with that of the conventional linear algorithms: PCA and FLD. The main contribution of this paper is the evaluation of the sensitivities of both IR and visible face images to illumination conditions, facial expressions and facial occlusions caused by eyeglasses using the kernel-based subspace methods.
This paper discusses a novel PCA based modification of standard SIFT and PCA-SIFT algorithms for the purpose of object class recognition. New descriptors intended to be simultaneously distinctive enough to describe the difference between features belonging to separate categories and general enough to capture the variations among features from the same class are proposed. The experimental results, gained for a test database, showing the reliability of introduced approach are presented.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
To solve the underdetermined blind separation (UBSS) problem, Aissa-El-Bey et al. have proposed the significant subspace-based algorithms in the time-frequency (TF) domain, where a fixed (maximum) value of K, i.e., the number of active sources overlapping at any TF point, is considered for simplicity. In this paper, based on the principle component analysis (PCA) technology, we propose a modified algorithm by estimating the number K for selected frequency bins where most energy is concentrated. Improved performances are obtained without increasing complexity.
PL
Do rozwiązania problem nieokreślonej ślepej separacji (UBSS) Aissa-El_Bey zaproponował algorytm czasowo-częstotliwościowy gdzie ustalono liczbę aktywnych źródeł pokrywających każdy punkt TF. W artykule zaproponowano zmodyfikowany algorytm bazujący na analizie składowej głównej PCA. Otrzymano poprawę parametrów bez powiększania skomplikowania metody.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.