Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  predictive analytics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Design of a Machine Learning Based Predictive Analytics System for Spam Problem
100%
EN
Spamming is the act of abusing an electronic messaging system by sending unsolicited bulk messages. Filtering of these messages is merely another line of defence and does not prevent spam messages from circulating in email systems. This problem causes users to distrust email systems, suspect even legitimate emails and leads to substantial investment in technologies to counter the spam problem. Spammers threaten users by abusing the lack of accountability and verification features of communicating entities. To contribute to the fight against spamming, a cloud-based system that analyses the email server logs and uses predictive analytics with machine learning to build trust identities that model the email messaging behavior of spamming and legitimate servers has been designed. The system constructs trust models for servers, updating them regularly to tune the models. This study proposed that this approach will not only minimize the circulation of spam in email messaging systems, but will also be a novel step in the direction of trust identities and accountability in email infrastructure.
2
Content available Time–frequency Analysis of the EMG Digital Signals
88%
EN
In the article comparison of time-frequency spectra of EMG signals obtained by the following methods: Fast Fourier Transform, predictive analysis and wavelet analysis is presented. The EMG spectra of biceps and triceps while an adult man was flexing his arm were analysed. The advantages of the predictive analysis were shown as far as averaging of the spectra and determining the main maxima are concerned. The Continuous Wavelet Transform method was applied, which allows for the proper distribution of the scales, aiming at an accurate analysis and localisation of frequency maxima as well as the identification of impulses which are characteristic of such signals (bursts) in the scale of time. The modified Morlet wavelet was suggested as the mother wavelet. The wavelet analysis allows for the examination of the changes in the frequency spectrum in particular stages of the muscle contraction. Predictive analysis may also be very useful while smoothing and averaging the EMG signal spectrum in time.
LogForum
|
2018
|
tom 14
|
nr 2
151-161
EN
Background: Big data and predictive analytics could improve the ability to help with the sustainability of sourcing decisions. Sustainability has become a necessary goal for businesses and a powerful strategy for competitive advantage. There’s a need for sustainable innovations along the supply chain to enable companies to have a strong market presence. Developing absorptive capacity both in firms and in supply chains are also integral to responding to dynamic markets and customer needs. The main objective of this paper is to identify the features of big data and predictive analytics applied to sustainable supply chain innovation, and to analyze the role of absorptive capacity. Methods: A literature review investigates how absorptive capacity affects the impact of the utilization of big data and predictive analytics on sustainable supply chain innovation. Results: This paper proposes a conceptual framework linking the different elements. It also proposes a synthesis of the existing definitions of the used concepts. In particular, the role of absorptive capacity as enabler on Big Data and Predictive Analytics on sustainable supply chain innovation is stressed. Conclusions: The paper investigates the emerging paradigm of big data and predictive analytics. The conceptual framework use theoretical foundation of absorptive capacity, and the extant literature on Big Data and predictive analytics. This framework will help us to build a research model for sustainable supply chain innovation applications. Further work is required to develop an action research methodology for validating the framework in depth within a company.
PL
Wstęp: Zastosowanie analizy big data oraz estymacji umożliwiają lepsze zrównoważenie decyzji wykorzystania zasobów. Rozwój zrównoważony stał się niezbędnym celem biznesowym i potężną strategią uzyskania przewagi konkurencyjnej. Można zaobserwować rosnące zapotrzebowania na zrównoważone innowacje w obrębie łańcucha dostaw, umożliwiające przedsiębiorstwom silny wpływ na rynek. Rozwój zdolności absorpcyjnej zarówno w firmach jak i w łańcuchach dostaw jest zintegrowane z potrzebami konsumentów oraz dynamicznych rynków. Głównym celem tej pracy było zidentyfikowanie cech analizy big data oraz estymacji istotnych dla zrównoważonych innowacji w obrębie łańcucha dostaw oraz analiza roli zdolności absorpcyjnej. Metody: Podstawą pracy był przegląd literatury, umożliwiający analizę wpływu zdolności absorpcyjnych na zastosowanie analizy big data oraz estymacji dla osiągnięcia zrównoważonej innowacyjności w obrębie łańcucha dostaw. Wyniki: Zaproponowano koncepcję rozwiązania łączącą różne elementy. Zaproponowano również syntezę istniejących definicji stosowanych koncepcji. W szczególności, rolę zdolności absorpcyjnych jako elementu umożliwiającego stosowanie analizy big data oraz estymacji dla zrównoważonej innowacyjności w obrębie łańcucha dostaw. Wnioski: W pracy badano pojawiający się paradygmat analizy big data oraz estymacji. Koncepcja oparta jest na zastosowaniu zdolności absorpcyjnej oraz istniejących danych literaturowych i ich wpływu na analizę big data. Praca pomaga zbudować model badawczy dla zrównoważonych innowacji w obrębie łańcucha dostaw. Zwrócono uwagę na potrzebę kontynuowania badań w tym zakresie.
PL
Niniejsze opracowanie poświęcone zostało analizie regulacji rozporządzenia Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. w sprawie ochrony osób fizycznych w związku z przetwarzaniem danych osobowych i w sprawie swobodnego przepływu takich danych (RODO) w celu odpowiedzi na pytanie, czy we właściwy sposób wyważają one interesy zarówno podmiotów wykorzystujących w swojej działalności gospodarczej analizę predykcyjną i profilowanie, jak i osób, których dane są przez nich przetwarzane. Ze względu na to, że ten rodzaj przetwarzania opiera się na dużych zbiorach danych, właściwą analizę tego zagadnienia należało rozpocząć od określenia, jakie informacje przetwarzane w takich zbiorach i w jakich warunkach należy uznać za dane osobowe. W oparciu o te ustalenia przeprowadzona została analiza obowiązków nakładanych przez RODO na podmioty przetwarzające dane osobowe w sytuacji, gdy źródłem danych są informacje pozyskane ze zbiorów typu big data. Umożliwiło to dokonanie oceny przyjętych regulacji normatywnych oraz wskazanie możliwych rozwiązań i ścieżek rozwoju.
EN
The text analyses the normative regulations adopted by the Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data (GDPR) in order to answer the question whether the said regulations properly balance the interests of both entities that use predictive analytics and profiling in their economic activity, and of persons whose data they process. As this type of processing is based on big data, the proper analysis of this issue had to begin with determining which types of data processed in such sets can be considered personal information and in what conditions they can be treated as such. Based on these findings, the study analyzed the duties imposed by the GDPR on entities processing personal data in situations when such information has been obtained from big data. This in turn made it possible to assess the adopted normative regulations as well as point to the possible solutions and development paths.
5
Content available Functioning of real-time analytics in business
63%
EN
Purpose: The goal of the paper is to analyze the main features, benefits and problems with the real-time analytics usage. Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic. Findings: The paper focus on the advantages and disadvantages of real-time analytics. The ability to process and analyze data in real-time allows organizations to quickly identify trends and patterns, optimize their operations, and allocate resources more efficiently. Additionally, real-time analytics helps businesses identify new revenue opportunities and optimize their pricing strategies, monitor user behavior, detect security threats, and react without delay. However, real-time analytics can be expensive to implement, require technical expertise, and generate false positives. Proper data quality, security measures, and system scaling are also essential for effective implementation. The vague definition of real-time and the requirement to collect detailed requirements from all stakeholders can also present challenges to businesses. Originality/value: Detailed analysis of all subjects related to the problems connected with the real-time analytics.
PL
Współczesne organizacje, aby być konkurencyjne, muszą mieć umiejętności przetworzenia olbrzymich danych. Jednym z najbardziej obiecujących kierunków w tym zakresie jest wykorzystanie analityki predykcyjnej, opierającej się na algorytmach i modelach uczenia maszynowego. Związanych z tym jest wciąż wiele wyzwań, m.in. pytanie o „wejście” do takich modeli, czy powinny to być wszystkie dane zgromadzone przez organizację czy może raczej wcześniej wybrane zmienne? Celem artykułu jest zbadanie skuteczności algorytmów opartych na drzewach klasyfikacyjnych ze względu na liczebność predyktorów.
EN
To stay competitive contemporary organizations have to master in processing massive amount of data. Predictive analytics, that is analytics based on machine learning algorithms and models, is one of the most promising directions. But there are many issues involved. One of them is the input to such models: should it be all data gathered by organization or just the selected variables? The aim of the article is to check how the number of predictors influences accuracy of classification algorithms based on trees.
EN
Background: Big data and predictive analytics could improve the ability to help with the sustainability of sourcing decisions. Sustainability has become a necessary goal for businesses and a powerful strategy for competitive advantage. There's a need for sustainable innovations along the supply chain to enable companies to have a strong market presence. Developing absorptive capacity both in firms and in supply chains are also integral to responding to dynamic markets and customer needs. The main objective of this paper is to identify the features of big data and predictive analytics applied to sustainable supply chain innovation, and to analyze the role of absorptive capacity. Methods: A literature review investigates how absorptive capacity affects the impact of the utilization of big data and predictive analytics on sustainable supply chain innovation. Results: This paper proposes a conceptual framework linking the different elements. It also proposes a synthesis of the existing definitions of the used concepts. In particular, the role of absorptive capacity as enabler on Big Data and Predictive Analytics on sustainable supply chain innovation is stressed. Conclusions: The paper investigates the emerging paradigm of big data and predictive analytics. The conceptual framework use theoretical foundation of absorptive capacity, and the extant literature on Big Data and predictive analytics. This framework will help us to build a research model for sustainable supply chain innovation applications. Further work is required to develop an action research methodology for validating the framework in depth within a company.
PL
Wstęp: Zastosowanie analizy big data oraz estymacji umożliwiają lepsze zrównoważenie decyzji wykorzystania zasobów. Rozwój zrównoważony stał się niezbędnym celem biznesowym i potężną strategią uzyskania przewagi konkurencyjnej. Można zaobserwować rosnące zapotrzebowania na zrównoważone innowacje w obrębie łańcucha dostaw, umożliwiające przedsiębiorstwom silny wpływ na rynek. Rozwój zdolności absorpcyjnej zarówno w firmach jak i w łańcuchach dostaw jest zintegrowane z potrzebami konsumentów oraz dynamicznych rynków. Głównym celem tej pracy było zidentyfikowanie cech analizy big data oraz estymacji istotnych dla zrównoważonych innowacji w obrębie łańcucha dostaw oraz analiza roli zdolności absorpcyjnej. Metody: Podstawą pracy był przegląd literatury, umożliwiający analizę wpływu zdolności absorpcyjnych na zastosowanie analizy big data oraz estymacji dla osiągnięcia zrównoważonej innowacyjności w obrębie łańcucha dostaw. Wyniki: Zaproponowano koncepcję rozwiązania łączącą różne elementy. Zaproponowano również syntezę istniejących definicji stosowanych koncepcji. W szczególności, rolę zdolności absorpcyjnych jako elementu umożliwiającego stosowanie analizy big data oraz estymacji dla zrównoważonej innowacyjności w obrębie łańcucha dostaw. Wnioski: W pracy badano pojawiający się paradygmat analizy big data oraz estymacji. Koncepcja oparta jest na zastosowaniu zdolności absorpcyjnej oraz istniejących danych literaturowych i ich wpływu na analizę big data. Praca pomaga zbudować model badawczy dla zrównoważonych innowacji w obrębie łańcucha dostaw. Zwrócono uwagę na potrzebę kontynuowania badań w tym zakresie.
8
Content available The basis of prospective analytics in business
63%
EN
Purpose: The goal of the paper is to analyze the main features, benefits and problems with the prospective analytics usage. Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic. Findings: Prescriptive analytics aims to assist businesses in making informed decisions that optimize desired outcomes or minimize undesired ones. It goes beyond predicting future outcomes and provides recommendations on the best actions to achieve desired goals while considering potential risks and uncertainties. Prescriptive analytics finds applications in various domains such as supply chain management, financial planning, healthcare, marketing, and operations management. It empowers businesses to make data-driven decisions, optimize resource allocation, enhance efficiency, and gain a competitive advantage. Considered the highest level of analytics, prescriptive analytics combines historical data, real-time information, optimization techniques, and decision models to generate actionable recommendations. Originality/value: Detailed analysis of all subjects related to the problems connected with the prospective analytics.
9
Content available Functioning of predictive analytics in business
63%
EN
Purpose: The goal of the paper is to analyze the main features, benefits and problems with the predictive analytics usage. Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic. Findings: Predictive analytics is a powerful tool that leverages historical data and statistical models to forecast future outcomes and behaviors. It enables organizations to gain valuable insights, make informed decisions, and drive business growth. By analyzing patterns, correlations, and trends in data, predictive analytics can uncover hidden relationships and provide a deeper understanding of business processes, customer behavior, market trends, and other important factors. The benefits of predictive analytics are numerous. It enables organizations to forecast and predict future events, leading to proactive decision-making and the ability to anticipate trends and outcomes. It enhances decision-making processes, improves resource allocation, and provides enhanced customer insights. Predictive analytics also helps in risk mitigation, fraud detection, optimization of operations and pricing, product development, and marketing effectiveness. By leveraging these benefits, organizations can gain a competitive advantage and achieve sustainable success. Originality/value: Detailed analysis of all subjects related to the problems connected with the predictive analytics.
EN
In this paper, the authors aim to develop a methodology for customer segmentation based on their response to marketing campaigns, considering customer value using predictive analytics methods and computer modeling tools. The scientific novelty of this article is the method of modeling and analyzing customer reactions to a marketing campaign. This method includes the following stages: questionnaire development and customer data collection; preliminary analysis of the received data; preparation of customer data in a formalized presentation; RFM analysis of customer value; building a model of customer feedback on a marketing campaign based on the solution list algorithm; analysis of the obtained results. The decision list algorithm was chosen to model customer response to marketing campaigns, which provides an inherent order to the rule set and a more accessible interpretation of the results. The IBM SPSS Modeler was used as a modeling tool. Customer information for the model was obtained through a survey conducted among customers of companies manufacturing packaging goods using a specially designed questionnaire. The practical value of the research lies in the application of the results of customer segmentation to create marketing strategies by a company that can consider the results of both models and group them to cover a wider range of customers.
PL
W artykule autorzy stawiają sobie za cel opracowanie metodologii segmentacji klientów na podstawie ich reakcji na kampanie marketingowe, z uwzględnieniem wartości klienta z wykorzystaniem metod analityki predykcyjnej i narzędzi modelowania komputerowego. Nowością naukową artykułu jest metoda modelowania i analizy reakcji klientów na kampanię marketingową. Metoda ta obejmuje następujące etapy: opracowanie kwestionariusza i zebranie danych o klientach; wstępną analizę otrzymanych danych; przygotowanie danych klienta w sformalizowanej prezentacji; analizę RFM wartości klienta; zbudowanie modelu opinii klientów o kampanii marketingowej w oparciu o algorytm listy rozwiązań; analizę uzyskanych wyników. Algorytm listy decyzyjnej został wybrany do modelowania reakcji klientów na kampanie marketingowe, co zapewnia nieodłączne uporządkowanie zestawu reguł i bardziej przystępną interpretację wyników. Jako narzędzie modelowania wykorzystano program IBM SPSS Modeler. Informacje o kliencie dotyczące modelu uzyskano poprzez ankietę przeprowadzoną wśród klientów firm produkujących towary opakowaniowe za pomocą specjalnie zaprojektowanej ankiety. Praktyczna wartość badania polega na zastosowaniu wyników segmentacji klientów do tworzenia strategii marketingowych przez firmę, która może uwzględnić wyniki obu modeli i pogrupować je w celu objęcia szerszego grona klientów.
|
2016
|
tom 10
|
nr 2
67-73
EN
Antiterrorist structures should consider opportunities and risks of advanced technologies which can influence the character, forms and efficiency of actions of terrorist organizations, and put forward the corresponding reorganization of counteraction to terrorism at national and international levels. These technologies can be developed on the basis of achievements of different research disciplines and, even more often, turn out to be a product of interdisciplinary efforts. The paper analyzes the ways of using cutting-edge technologies by terroristorganizations in the field of exerting an influence on individual and public consciousness, and also possible reaction to such threats.
PL
Struktury antyterrorystyczne uwzględniają możliwości i ryzyka technologii perspektywicznych, które mogą mieć wpływ, tak na charakter, formy i efektywność działalności organizacji terrorystycznych. Odpowiedniej przebudowy potrzebują również systemy przeciwdziałania terroryzmowi na poziomie narodowym i międzynarodowym. Technologie te mogą być opracowywane na podstawie osiągnięć różnych dyscyplin naukowych i częściej okazują się wytworem wysiłków interdyscyplinarnych. W artykule analizowane są możliwości wykorzystania technologii perspektywicznych przez organizacje terrorystyczne w obrębie wpływu na indywidualną i społeczną świadomość oraz możliwe odpowiedzi na tego typu zagrożenia.
PL
Na początku pierwszej dekady XXI wieku rozpoczęła się czwarta rewolucja przemysłowa, która opiera się na pracy na dotychczas niespotykanej ilości danych, co w rezultacie umożliwia cyfryzację oraz integrację systemów i procesów. Przywołane zmiany są wdrażane również w branży budowlanej, co przekłada się bezpośrednio na opracowywanie nowych innowacyjnych rozwiązań, których celem jest poprawa wybranych parametrów procesu inwestycyjno-budowlanego. W niniejszym artykule przedstawiono możliwości wdrożenia w obszarze bezpieczeństwa i higieny pracy na budowie następujących technologii: BIM, czyli modelowanie informacji o obiekcie budowlanym, usługi w chmurze i technologie mobilne, sztuczna inteligencja, ze szczególnym uwzględnieniem analityki prognostycznej, Internet rzeczy, Rzeczywistość rozszerzona, robotyzacja, bezzałogowe statki powietrzne i egzoszkielety, Druk 3D, Big Data, Cyfrowe bliźniaki (digital twins). Przeprowadzona analiza umożliwiła wskazanie pól, które już są gotowe do szerokiej implementacji, a które obszary stanowią potencjalne obszary, które mogą być wdrożone w celu poprawy warunków BHP w realizacji kontraktów budowlanych.
EN
At the beginning of the first decade of the 21st century, the fourth industrial revolution began, which is based on working with previously unprecedented amounts of data, which ultimately enables the digitization and integration of systems and processes. The above-mentioned changes are also implemented in the construction industry, which translates directly into the development of new innovative solutions aimed at improving selected parameters of the investment and construction process. This article presents the possibilities of implementing the following technologies in the area of occupational health and safety on construction sites: BIM, i.e. building information modeling, cloud services and mobile technologies, artificial intelligence, with particular emphasis on predictive analytics, Internet of Things, Augmented Reality, robotization, unmanned aerial vehicles and exoskeletons, 3D printing, Big Data, Digital twins. The analysis carried out made it possible to identify the fields that are already ready for wide implementation, and which areas are potential areas that can be implemented in order to improve health and safety conditions in the implementation of construction contracts.
EN
The digital revolution is changing every aspect of life by simulating the ways humansthink, learn and make decisions. Dentistry is one of the major fields where subsets ofartificial intelligence are extensively used for disease predictions. Periodontitis, the mostprevalent oral disease, is the main focus of this study. We propose methods for classifyingand segmenting periodontal cysts on dental radiographs using CNN, VGG16, and U-Net.Accuracy of 77.78% is obtained using CNN, and enhanced accuracy of 98.48% is obtainedthrough transfer learning with VGG16. The U-Net model also gives encouraging results.This study presents promising results, and in the future, the work can be extended withother pre-trained models and compared. Researchers working in this field can develop novelmethods and approaches to support dental practitioners and periodontists in decision-making and diagnosis and use artificial intelligence to bridge the gap between humansand machines.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.