This note gives five applications of the eater-food interaction model (Gårding 2005) where cycle length is a function of the eater average birth rate defined as the inverse of average life span. The model extends to an analysis of predator-prey-food cycles (Gårding 2000). Here the cycle length is the same as that of en eater-food interaction whose average ’birth rate’ is the sum of the average birth rates of the predator-prey and prey-food interactions.
Large mammalian carnivores place significant pressure on their prey populations and this is exacerbated within the fenced reserves of Africa. However, foraging theory predicts that diet switching by predators may mitigate this pressure. In this study, we use data collected between 2003 and 2007 from an enclosed system in the Eastern Cape Province of South Africa to examine the response of lions Panthera leo to changes in the abundance of two important prey species — kudu Tragelaphus strepsiceros and warthog Phacochoerus africanus. As the relative abundance of warthogs increased, the number of kudu kills decreased significantly, whereas warthog kills became significantly more frequent. A similar pattern was observed for lion prey preference and the switch from kudu to warthog was also reflected in a significant decrease in the mean prey mass. Our results suggest that a diet shift occurs in lions and that the change in diet is primarily in response to an increase in warthog numbers. Prey switching may promote the persistence of predator–prey systems, which is particularly important for fenced systems where natural immigration of prey is not possible. However, continued collection and analysis of long-term observational data from the multipredator, multiprey systems of Africa is required to facilitate a full understanding of predator–prey dynamics.