Power system stabilizers (PSSs) are the most well known and efficient devices to damp the power system oscillations caused by interruptions. Low frequency oscillation problems are very difficult to solve because power systems are very large, complex and geographically distributed. Hence, it is necessary to employ most efficient optimization methods to take full advantages in simplifying the problem and its implementation. These optimization methodologies and techniques are widely diverse and have been the subject of ongoing enhancements over the years. This paper presents a survey of literature on the various optimization methods applied to solve the PSS problems.
PL
System stabilizacji mocy PSS jest powszechnie stosowaną i skuteczną metodą tłumienia oscylacji spowodowanych przerwaniami. Oscylacje niskiej częstotliwości są trudne do eliminacji ze względu na ich złożoność i rozległość przestrzenną. Dlatego warto poszukiwać skutecznych metod optymalizacji metody PSS. Artykuł przedstawia metody optymalizacji wykorzystujące sztuczną inteligencję.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Nowadays, fuzzy controllers have achieved an important role in different systems and their superiority over the classical control methods has been proved. In this study, the power system stabilizer is used to damp the power system oscillations based on the fuzzy logic controller. A three-phase to ground-fault test is done during a period of 10 ms to evaluate power system behaviour between the area of two distinct points. Simulation results show that the system is unstable without a stabilizer. It has also been determined that the fuzzy stabilizers have high ability to damp the system oscillations in comparison with classical stabilizers so that system oscillations are damped with higher speed and lower amplitude. Also in this study, the Cuckoo search algorithm is used to optimize the fuzzy stabilizer inputs and improve its performance. The results show that the optimizations of stabilizer parameters improve their damping performance.
PL
W artykule opisano algorytm typu Fuzzy logic wykorzystany do tłłumirnia oscylacji w systemie zasilania.Wykoyowany jest test systemu między dwoma odległymi punktami. W porównaniu z klasycznymi sterownikami zaproponowany sterownik oscylacje tłumione sa szybciej i skuteczniej.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono problematykę projektowania stabilizatorów systemowych urządzeń FACTS. Dyskusja została skoncentrowana wokół wyboru struktury, transmitancji stabilizatora systemowego urządzenia FACTS. Ponadto zawarto analizę dotyczącą wskaźników jakości wykorzystywanych w procesie optymalizacji parametrów stabilizatora systemowego. Analiza została wzbogacona poprzez wyniki badań symulacyjnych wybranych wskaźników jakości regulacji dla prostego układu testowego generator sieć sztywna.
EN
The selected problems of FACTS-based stabilizer design are presented in this paper. The discussion is focused around the choice of structure and transfer function of the robust stabilizing controller. Practical tips for the selection of stabilizer transfer function type are provided. An analysis concerning performance index used in process parameter optimization is also presented. The analysis is extended by performing a few additional tests using selected performance indices on a simple generator - infinite bus model, the results of which are included in this paper.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Power System Stabilizer (PSS) is a supplementary control that provides additional control actions on the excitation side of the generator. In this study a Craziness Particle Swarm Optimization (CRPSO) based tuning method is proposed to optimize the PSS parameters. CRPSO is a development of the conventional PSO method, where in conventional PSO there is a tendency to achieve premature convergence. This condition causes the solution obtained to be the optimum local. With optimal PSS parameters, the optimal PSS performance is obtained. The combination of PSS and excitation is used to reduce the oscillation that occurs in the system. In this research a case study of load addition and load shedding is used. From the simulation results, it is found that system performance is more optimal using CRPSO than using conventional PSO. System performance is shown by the response of the generator speed and rotor angle which results in a small overshoot and a faster settling time when there is an increase in load and also load shedding. Increased system performance is also viewed from the negative system eigenvalue, negative eigenvalue indicates the system is stable.
PL
Stabilizator systemu zasilania (PSS) jest dodatkowym sterowaniem, które zapewnia dodatkowe działania sterujące po stronie wzbudzenia generatora. W tym badaniu zaproponowano metodę strojenia opartą na Craziness Particle Swarm Optimization (CRPSO) w celu optymalizacji parametrów PSS. CRPSO jest rozwinięciem tradycyjnej metody PSO, gdzie w konwencjonalnym PSO istnieje tendencja do osiągnięcia przedwczesnej konwergencji. Stan ten powoduje, że otrzymane rozwiązanie jest optymalne miejscowo. Przy optymalnych parametrach PSS uzyskuje się optymalną wydajność PSS. Połączenie PSS i wzbudzenia służy do zmniejszenia oscylacji występujących w systemie. W tym badaniu wykorzystano studium przypadku dodawania i odciążania. Z symulacji wynika, że wydajność systemu jest bardziej optymalna przy użyciu CRPSO niż przy użyciu konwencjonalnego PSO. Wydajność systemu jest pokazana przez reakcję prędkości generatora i kąta wirnika, co skutkuje niewielkim przeregulowaniem i szybszym czasem ustalania, gdy występuje wzrost obciążenia, a także zmniejszenie obciążenia. Zwiększona wydajność systemu jest również postrzegana z ujemnej wartości własnej systemu, ujemna wartość własna wskazuje, że system jest stabilny.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper proposes a method of sliding mode control (SMC) approach for excitation control in a single generator-infinite bus power system. Conventional power system stabilizer (C-PSS) design becomes a complicated problem in presence of internal and external disturbances to the excitation of a power system. Improving the stability of the power system has become a priority objective. The aim of this work is to ensure maximum damping of the electromechanical oscillations of the Single Machine Infinity Bus System (SMIB) by the power stabilizers based on the sliding mode control technique. The effectiveness of the proposed approach is demonstrated through computer simulations on two different cases of operating conditions. The performance of the proposed approach is evaluated in terms of damping power system oscillations. The obtained results show the high performance of the proposed controller to improve the stability of the power system compared to the C-PSS and found to be impressive.
PL
W artykule zaproponowano metodę sterowania trybem ślizgowym (SMC) do sterowania wzbudzeniem w pojedynczym generatorowonieskończonym systemie zasilania szyny. Konstrukcja konwencjonalnego stabilizatora systemu elektroenergetycznego (C-PSS) staje się skomplikowanym problemem w obecności wewnętrznych i zewnętrznych zakłóceń wzbudzenia systemu elektroenergetycznego. Poprawa stabilności systemu elektroenergetycznego stała się celem priorytetowym. Celem pracy jest zapewnienie maksymalnego tłumienia oscylacji elektromechanicznych systemu SMIB (Single Machine Infinity Bus System) przez stabilizatory mocy oparte na technice sterowania ślizgowego. Skuteczność proponowanego podejścia demonstrowana jest poprzez symulacje komputerowe w dwóch różnych przypadkach warunków pracy. Skuteczność proponowanego podejścia oceniana jest pod kątem tłumienia oscylacji systemu elektroenergetycznego. Uzyskane wyniki wskazują na wysoką wydajność proponowanego sterownika w celu poprawy stabilności systemu elektroenergetycznego w porównaniu z C-PSS i okazały się imponujące.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule zaprezentowano badania układu sterownia grupowego pozwalającego na ograniczenie kołysań mocy małych zespołów wytwórczych pracujących w systemie elektroenergetycznym. Koncepcja układu sterowania opiera się na teorii stabilizatorów systemowych. W procesie optymalizacji wyznaczono parametry stabilizatorów systemowych w zespołach wytwórczych dużej mocy (w pierwszym etapie) oraz optymalne wartości współczynników wagowych regulatora elektrowni wirtualnej (w drugim etapie) z punktu widzenia tłumienia kołysań elektromechanicznych w SEE. W obu etapach do obliczeń wykorzystano algorytm genetyczny.
EN
The paper presents investigations of a group control system enabling the damping of power swings of small generating units operating in the electric power system. The idea of the control system is based on the theory of system stabilizers. There were determined the parameters of system stabilizers used in high-power generating units (at the first stage) and the optimal values of the weighting coefficients of the virtual power plant regulator (at the second stage) from the point of view of damping electromechanical swings in the power system. A genetic algorithm was used for computations at both stages.
Przedstawiono zagadnienie wyznaczania optymalnego umiejscowienia (lokalizacji) stabilizatorów systemowych w wielomaszynowych systemach elektroenergetycznych i sposób określania parametrów tych stabilizatorów. Założono, że optymalne umiejscowienie stabilizatorów systemowych w systemie elektroenergetycznym wyznacza się dla warunków występowania małych zakłóceń, dla których można posłużyć się linearyzacją równań stanu wokół ustalonego punktu pracy. Przy określonej lokalizacji wyznacza się parametry stabilizatorów systemowych wstępnie przy założeniu występowania małych zakłóceń w systemie (jak w odniesieniu do badania optymalnego umiejscowienia). Istotny tu współczynnik wzmocnienia stabilizatora systemowego jest na tym etapie obliczony z najmniejszą dokładnością. Następny etap obliczeń dotyczy wyznaczenia współczynników wzmocnienia poprzez minimalizację odchyłek wybranych zmiennych stanu i wynikających z nich wielkości przy założeniu różnych dużych zakłóceń występujących w różnych stanach obciążenia i różnych miejscach systemu elektroenergetycznego, opisywanego w tym przypadku przez układ nieliniowych równań stanu. W szczególności opracowano następujące zagadnienia: 1. Przedstawiono modele matematyczne elementów składowych zespołów wytwórczych: generatorów synchronicznych, układów wzbudzenia z regulatorami napięcia, stabilizatorów systemowych, turbin wraz z ich układami regulacji. Model matematyczny zespołu wytwórczego wynika z połączenia wymienionych wyżej modeli elementów składowych, a następnie model całego systemu elektroenergetycznego utworzono poprzez połączenie modeli zespołów wytwórczych z modelem zredukowanej sieci elektroenergetycznej. W podobny sposób otrzymano zlinearyzowany model systemu elektroenergetycznego poprzez połączenie wszystkich modeli składowych zlinearyzowanych wokół ustalonego punktu pracy. 2. W metodzie znajdowania optymalnego rozmieszenia stabilizatorów systemowych posłużono się efektywną metodą analizy modalnej i teorią wrażliwości adaptowaną dla rozbudowanych układów regulacji. Przy określeniu optymalnego rozmieszenia stabilizatorów posłużono się badaniem wrażliwości elektromechanicznych wartości własnych macierzy stanu systemu na oddziaływanie idealnych stabilizatorów systemowych zastosowanych w kolejnych zespołach wytwórczych przy wykorzystaniu ich czynników udziału. 3. Wykorzystano iteracyjną metodę AESOPS do wyznaczenia elektromechanicznych wartości własnych macierzy stanu systemu i odpowiadających im wektorów własnych macierzy stanu układu o dużym rozmiarze. 4. Wartości stałych czasowych członów korekcyjnych stabilizatorów systemowych wyznacza się dla zlinearyzowanego modelu systemu elektroenergetycznego zawierającego zespoły wytwórcze o nieskończenie dużych momentach bezwładności metodą opartą na wyodrębnieniu składowych momentu elektromagnetycznego generatora synchronicznego, wśród nich składowej momentu związanej z działaniem stabilizatora systemowego. 5. Współczynniki wzmocnienia, które określają skuteczność działania stabilizatorów systemowych, wyznacza się poprzez minimalizację odchyłek prędkości kątowej, mocy czynnej i napięcia twornika występujących przy dużych krytycznych zakłóceniach, przy wybranych stanach obciążenia i w wybranych punktach systemu elektroenergetycznego. Posłużono się w tym celu minimalizacją wprowadzonego uogólnionego syntetycznego ważonego wskaźnika jakości przebiegów regulacyjnych przy dużych zakłóceniach krytycznych w systemie elektroenergetycznym. 6. Obliczenia przeprowadzono dla systemu odwzorowującego Krajowy System Elektroenergetyczny współpracujący z systemem elektroenergetycznym Europy Zachodniej UCPTE w szczycie zimowym 1995 roku.
EN
The monograph deals with the determination of optimal site selection (localization) of power system stabilizers (PSSs) in a multimachine power system and with methods of PSS parameter evaluation. There has been assumed, that the optimal PSS site selection in the power system results from the analysis performed for the case of small disturbances, which allows the linearization of the nonlinear state equation set about the steady state operation point. The parameters of PSSs are determined at the given localization assuming (as in the optimal site selection task) small disturbances in the system, the PSS gain being hereby evaluated with the least accuracy. The following optimisation concerns the final evaluation of the PSS gains by an effective manner of minimising the state variable deviations and dependent quantities at assumed various large disturbances in the power system, in this cases the system being described by nonlinear state equation set. The following themes have been particularly elaborated: 1. Presentation of the mathematical models of the generating unit components: synchronous generators, excitation systems with voltage regulators, PSS, steam or water turbine with their governor systems. The mathematical model of the generating unit results from interconnecting of the mentioned component models. Further the model of the whole power system has been created by interconnecting the models of the generating units with the model of the reduced network. The linearized model of the power system has been determined in a similar way by an interconnection of all the component models linearized about the steady state operating point. 2. For optimal site selection of PSSs in the power system there have been applied the effective modal analysis and the sensitivity theory adapted for extended regulation system. The sensitivity analysis of the electromechanical eigenvalues of the state matrix due to the influence of ideal PSS introduced in successive generating units has been chosen as the most effective method to determine the optimal PSS site selection when taking into account their correspondent participation coefficients. 3. The iterative AESOPS method has been applied to evaluate the electromechanical eigenvalues and corresponding eigenvectors of the system matrix (usual of high dimension), due to rotor swings effects in the power system. 4. The time constants of PSSs have been determined for the linearized system model (with infinitive mechanical inertia constants of the generating units) by the method basing on the distinguished electromagnetic torque components of the synchronous machine influenced by the voltage regulator. 5. The gains, which determine the effectiveness of PSS action have been evaluated by minimising various state variable and non-state variable deviations (of angular speed, active power and armature voltage) occuring at chosen large critical disturbances at the chosen load rates and in the chosen points of the power system. A generalised synthetic weighted quality factor resulting from the regulating courses of deviations at strong critical disturbances in the power system has been introduced for that reason. 6. The exemplary calculations have been performed for the system representing National Power System in parallel operation with the power system UCPTE of Western Europe at winter season peak load 1995.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.