Purpose: This paper discusses improvements associated with the life of cutting tools used to machine M42 tool steel. To achieve this in an efficient way, experiments on a variety of tool coatings are conducted on AISI M42 tool steel (58-63 HRC). Design/methodology/approach: In order to assess the impact of different tool coatings on the machining process, initial experiments simulate existing machining operations; this provides a standard for tool life and surface finish. Findings: The findings in the paper show that TiAlCrYN coated WC-Co cutting tools perform better than uncoated cutting tools. Research limitations/implications: The implications of the paper tend to indicate that machining M42 tool steels without lubricant can be optimized using coated cutting tools. The limitations of the paper include machining at one specific cutting speed and the employment of a short-time tool wear method. Practical implications: The practical implications of the paper show that dry machining of hardened tool steels can be achieved under certain circumstances. Further research is needed to explain how the wear mechanism changes with varying machining conditions. Originality/value: The paper presents original information on the characteristics of dry machining of M42 tool steel under specific machining operations. The paper is of interest to manufacturing engineers and materials scientists.
The WC-Co carbides are widely used to deposit protective coatings on engineering surfaces against abrasion, erosion and other forms of wear existence. The nanostructure coatings offer high strength, a low friction coefficient and chemical and thermal stability. WCo coatings were deposited using EBPVD technique realized in original technological process implemented in the hybrid multisource device, produced in the Institute for Sustainable Technologies - National Research Institute in Radom (Poland). The different kind of precursor sources was used. Depending on the source of precursors nanostructure of coatings forms continuous film or consist from nano-carbides. Nanocrystalline WC-Co coatings show hardness in the range of 510-1266 HV. The microstructure of coatings were observed by transmission electron microscopy (TEM). The phase consistence were determined byBrucker D8 Discover-Advance Diffractometer. The paper presents the original technological equipment, methodology, and technological parameters for the creation of the nanocomposite coatings WC.
PL
Węgliki WC-Co są szeroko używane do osadzania na powierzchniach inżynierskich jako ochrona przeciwko tarciu, erozji i innym formom zużycia. Powłoki nanostrukturalne wykazują wysoka wytrzymałość, niski współczynnik tarcia oraz chemiczną i termiczną stabiność. Powłoki WC-Co zostały osadzane techniką EBPVD przy użyciu oryginalnego technologicznego procesu z hybrydowym źródłem prekursorów, w Instytucie Technologii Eksploatacji w Radomiu (Polska). Użyto różnego rodzaju źródeł prekursorów. W zależności od rodzaju użytego źródła prekursorów nanostrukturalne powłoki były zbudowane z ciągłych warstw lub z nano-weglików. Mikrotwardość nanokrystalicznych powłok mieściła się w zakresie 510-1266 μHV. Mikrostruktura powłok była obserwowana transmisyjnym mikroskopem elektronowym (TEM). Skład fazowy powłok określono za pomocą aparatu rentgenowskiego Brucker D8 Discover-Advance Diffractometer. Artykuł prezentuje oryginalne technologiczne urządzenie, metodologię i technologiczne parametry pozwalające na wytworzenie nanokompozytowej powłoki WC.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: This paper discusses improvements associated with the tool life of cutting tools used to machine alloy steels. To achieve this in an efficient manner, experiments on a variety of tool coatings are conducted on AISI M42 tool steel (58-63 HRC). Design/methodology/approach: In order to assess the impact of different tool coatings on machining process, initial experiments simulate current machining operations; this provides a benchmark standard for tool life and surface finish. Findings: The findings in the paper show that TiAlCrN and TiAlCrYN coated WC-Co cutting tools perform better than uncoated and TiN coated cutting tools. Research limitations/implications: The implications of the paper tend to indicate that dry machining of M42 tool steels can be optimized using coated cutting tools. The limitations of the paper include machining at specific cutting speeds and the employment of a short-time tool wear method. Practical implications: The practical implications of the paper show that dry machinig of hardened tool steels can be achieved under specific circumstances. Further research is needed to explain how the wear mechanism changes under various machining conditions. Originality/value: The paper presents original information on the characteristics of dry machining of tool steels under specific machining operations. The paper is of interest to manufacturing engineers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.