Osadzano elektrochemicznie nanostrukturalne powłoki kompozytowe z osnową niklową i cząstkami B. Do elektroosadzania kompozytowych powłok używano niskosteżeniowej kąpieli zawierającej 0,76 mol/dm3 niklu(II), związek organiczny blaskotwórczy, zwilżacze i jako cząstki dyspersyjne bor. Zawartość masową cząstek w powłoce oznaczano grawimetrycznie. Na rysunku 1 przedstawiono zależność zawartości boru w powłoce kompozytowej Ni-B od stężenia i rodzaju dodatków organicznych. Obserwacje mikroskopowe struktury folii niklowych przeprowadzono na transmisyjnym mikroskopie elektronowym (TEM) (rys. rys. 2-4). Chropowatość warstw Ni-B mierzono profilografem TR 100 (rys. 5). Mikrotwardość mierzono metodą Vickersa przy obciążeniu 0,01 i 0,05 kG. Na rysunkach 6 i 7 przedstawiono wyniki pomiarów mikrotwardości kompozytowych powłok Ni-B. Badania odporności na zużycie wykonano na kulotesterze. Na podstawie śladów wytarcia i pomiarów ich średnicy obliczano głębokość wytarcia, która była miarą odporności na zużycie. Głębokość wytarcia powłok kompozytowych Ni-B w zależności od stężenia i rodzaju dodatków organicznych pokazano na rysunku 8. Stwierdzono, że użyte związki organiczne miały znaczący wpływ na ilość boru wbudowanego w powłokę kompozytową i rozwój struktury nanokrystalicznej osnowy niklowej. Ze wzrostem chropowatości powłoki Ni-B rosła odporność na zużycie.
EN
In present work the nanocrystalline composite electrochemical coatings were prepared with nickel matrix and particles B. The nickel plating bath of low nickel ion concentration (0.76 mol/dm3) containing brightening organic compound with surfactants and the dispersed particle (boron) was used for electrodeposition of composite coatings. The content of particles in coatings was examined gravimetrically. The dependence of the boron content in the composite coatings Ni-B from of the concentration and kind of the organic additives is given in Figure 1. The structure the composite coatings was established using TEM (Figs. 2-4). The roughness of the coatings Ni-B was measured using tester TR 100 (Fig. 5). The microhardness of the deposited layers was measured using a Vickers' method at a load of 0.01 and 0.05 kG. Figures 6 and 7 shows the microhardness of the composite coating Ni-B. The experiments for Ni-B coatings were made without lubrication and was tested using a technique based on the measuring system comprising a flat surface and a ball. On the basis of the wear traces and measurement of their diameter, the depth of the wear was calculated, which was the measure of wear resistance. The wear of the composite coatings Ni-B in the dependence from of the concentration and kind of the organic additives is given on Figure 8. The results suggest that the effect used of the organic compounds was the increase of the boron contents in the coating and the development of the nanostructure of the nickel matrix. The wear resistance increased with the roughness increase.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Osadzano elektrochemicznie hybrydowe powłoki kompozytowe z osnową niklową i cząstkami ceramicznymi SiC oraz cząstkami fluoropolimerów: PTFE i CFx. W tabeli l podano charakterystykę cząstek użytych w badaniach. Na rysunkach l oraz 2 przedstawiono dyfraktogramy badanych cząstek SiC i politetrafluoroetylcnu. Rysunki 3 i 4 ilustrują liniowy rozkład węgla i krzemu w hybrydowej powłoce kompozytowej Ni-SiC-PTFE. Badania przeprowadzano w niskostężeniowej (NS) kąpieli do niklowania zawierającej dodatek blaskotwórczy HRN i cztery związki powierzchniowo czynne. Jako katody użyto blaszek niklowych o powierzchni l cm . Elektrodą odniesienia była elektroda chlorosrebrna, a elektrodą porównawczą elektroda platynowa. Rejestrowano katodowe krzywe chronowoltamperomctryczne w zakresie od -0,6 do -1,2 V z szybkością przemiatania 5 mV/s. Proces prowadzono w temp. 45š1°C przy pH 4. Roztwór mieszano z użyciem mieszadła magnetycznego z szybkością 500 obr/min. Badano wpływ obecności proszku SiC i dyspersji tarflenowej oraz dodatku blaskotwórczego i zwilżaczy na kinetykę redukcji jonów niklu (II). Na rysunku 5 przedstawiono zależność szybkości reakcji redukcji jonów Ni2+ w obecności związków powierzchniowo czynnych względem szybkości dla kąpieli niklowej bez dodatków od stężenia tych dodatków w kąpieli. Takie same wykresy dla kąpieli niklowej zawierającej dodatek blaskotwórczy HRN przedstawiono na rysunku 6. Wprowadzenie SiC do kąpieli niklowej powoduje przesunięcie potencjału katodowego w kierunku ujemnym (rys. 7). Dodatek zwilżaczy wywiera odwrotny wpływ - potencjał katodowy przesuwa się w kierunku dodatnim (rys. 8). Podobne zależności otrzymano dla dyspersji tarflenowej i przedstawiono je na rysunkach 9 i 10. Na rysunku 11 pokazano krzywe polaryzacji katodowej dla pięciu hybrydowych kąpieli kompozytowych (tab. 2). Zmiany w kinetyce redukcji jonów niklu (II) dla tych kąpieli przedstawia rysunek 12. Wprowadzenie do kąpieli, zawierającej dodatek blaskotwórczy i zwilżacz, dwóch rodzajów cząstek we wszystkich przypadkach powodowało zmniejszenie szybkości reakcji redukcji jonów niklu (II) w porównaniu z szybkością dla kąpieli bez dodatków. W tabeli 3 przedstawiono potencjały osadzania hybrydowych warstw kompozytowych przy gęstości prądu 4 A/dm oraz zawartość wbudowanych cząstek dyspersyjnych. Najmniejsze przesuniecie potencjału osadzania wykazały warstwy z SiC1OOO, CFx i WFK1, a największe z SiCnano, DT i WFK1. Stwierdzono wpływ dodatku blaskotwórczego i ZPC na współosadzanie cząstek dyspersyjnych. ZPC powodowały przesunięcie potencjału redukcji jonów niklu (II) w kierunku ujemnym lub dodatnim, a dodatek blaskotwórczy i cząstki dyspersyjne w kierunku ujemnym.
EN
In present work the hybrid composite electrochemical coatings were prepared with nickel matrix and SiC as the ceramic particles and PTFE or CFx as polymer particles. Table 1 shows the particle's character. X-ray diffraction pattern for the dispersed particles of SiC and polytetrafluoropolymer are given in Figures 1 and 2. Linear distribution of carbon (Fig. 3) and silicon (Fig. 4) in the hybrid composite coating Ni-SiC-PTFE was given. Studies were carried out in the low-concentration nickel bath (NS) containing the brightening agent HRN and the four surfactants (ZPC). Nickel with a surface of 1 cm2 was used as cathode, silver-silver chloride as reference electrode and platinum as auxiliary electrode. Cathodic voltammetric curves with continuously changing potential were recorded in the range from -0.6 to -1.2 V with a sweep rates of 5 mV/s. The temperature of bath was 45š1°C and pH was 4. The solution was stirred with a magnetic stirrer at a rate of 500 revolution/minute. The influence of the following factors on the kinetics of nickel ion reduction was studied: presence of SiC powder and teflon dispersion, addition of brightening and wetting agents. The dependence of the current deposition of nickel from a bath containing surfactants versus the current deposition from a bath without additives in the potential -950 mV from the surfactant concentration is given in Figure 5. This same dependence for a bath with brightening agent HRN as a comparative bath is presented in Figure 6. Introduction of SiC powder to the solution NS causes the shift of curves towards more negative potentials (Fig. 7). Addition of surfactants caused a shift of cathodic curve towards more positive potentials (Fig. 8). Similar dependencies are presented for the teflon dispersion in Figures 9 and 10. Curves of cathodic polarisation for five of the hybrid composite nickel bath (Tab. 2) are presented in Figure 11. Changes in kinetics of the nickel ion reduction from these baths are presented in Figure 12. In every case, the introduction of two species dispersed particles to the bath containing the brightening and wetting agent caused a lowering of the electrochemical reaction rate versus this rate for a bath without additives. In Table 3 is presented the potential deposition of layers in the current density 4 A/dm2 and the contents of the dispersed particles in the coating. This potential is least shifted for the bath containing SiC1OOO, CFx and WFK1 as wetting agent and most for the bath containing SiCnano, teflon dispersion and this same surfactant. The codeposition of a SiC and fluoropolymer with electrodeposited nickel coatings, are found to be affected by the brightening and wetting agents present in the electrolyte. Generally, the wetting agents caused a lowering or heightening of overpotential of nickel ion reduction, brightening agent caused a lowering this overpotential and the dispersed particles too.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Osadzano elektrochemicznie kompozytowe powłoki z osnową niklową i cząstkami dyspersyjnymi: SiC, PTFE i CFx (tab. 1, rys. rys. 1-3) na podłożu Cu pokrytym warstwą amorficznego niklu. Do badań użyto niskostężeniowej kąpieli niklowej (NS) zawierającej sześć związków powierzchniowo czynnych (ZPC). Badania wyznaczające orientację preferowaną powłok kompozytowych, rozmiary krystalitów [111] osnowy niklowej, mikronaprężenia i stałe sieciowe wykonano na dyfraktometrze Simens D500 z promieniowaniem CuK[alfa]. W tabeli 2 zamieszczono wyniki pomiarów rozmiarów ziaren [111] niklu, mikronaprężeń i stałych sieciowych powłok Ni-SiC, a w tabeli 3 dla powłok Ni-PTFE. Te same dane dla powłok hybrydowych zawiera tabela 4. Mierzono również całkowitą intensywność linii (hkl) i wyznaczano orientację powłok jako objętość frakcji f(hkl) krystalitów. Obliczono względne procentowe udziały orientacji preferowanych i chaotycznej. Na rysunkach 4 i 5 przedstawiono względne udziały procentowe orientacji preferowanych i chaotycznej dla powłok kompozytowych Ni-SiC, na rysunkach 6 i 7 - dla powłok kompozytowych Ni-PTFE, zaś na rysunku 8 - dla powłok hybrydowych Ni-SiC-fluoropolimer. Wszystkie elektroosadzone powłoki miały bardzo rozdrobnioną nanokrystaliczną strukturę. Zarówno cząstki dyspersyjne, jak i związki powierzchniowo czynne wywierały znaczący wpływ na orientację powłoki, rozmiary krystalitów i mikronaprężenia. Dyskutowano wpływ tych czynników na rozwój tekstury w procesie elektroosadzania niklowych powłok kompozytowych.
EN
In present work the composite electrochemical coatings were prepared with nickel matrix and SiC, PTFE and CFx (Tab. 1, Figs 1-3) as dispersed particles. Studies were carried out in the low-concentration nickel bath (NS) containing the six surfactants (ZPC). The coatings were electrodeposited on a Cu substrate with an amorphous nickel covering. Siemens D500 X-ray diffractometer with CuK[alpha] radiation was used to determine the preferred orientation, the dimensions of nickel [111] crystallites, microstresses and the cell constants from the surface of the test panel. Table 2 shows the dimensions crystallites, microstresses and the cell constants Ni-SiC coatings and Table 3 - Ni-PTFE coatings, This same data are present for hybrid Ni-SiC-PTFE coatings in Table 4. The total intensity of the lines (hkl) was measured and the orientations of the deposits were determined and were expressed in terms of texture coefficients as the volume fraction f(hkl) of the crystallites. The percentage parts of the relative random and preferred orientations were calculated. In Figures 4, 5 are presented the relative percentage parts of the random and preferred orientations for Ni-SIC composite coatings, in Figures 6,7 - for Ni-PTFE composite coatings and in Figure 8 - for Ni-SiC-fluoropolymer hybrid coatings. All electrodeposited deposits had a very fine-grained nanocrystalline structure. The dispersed particles and surfactants exert quite a remarkable effect on the deposit orientation, the dimension of crystallites and microstresses. Factors determining the development of coatings texture in the process of the composite nickel coatings electrodeposition were discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.