W artykule opisano badania okulometryczne jednego kierowcy poruszającego się samochodem osobowym drogą krajową jednojezdniową. W badaniach użyto mobilnego systemu pomiarowego o rozdzielczości 30 Hz montowanego na głowie kierowcy. Kierowca przejeżdżał w ciągu roku średnio około 20 tysięcy kilometrów, a badanym odcinkiem drogi średnio 2 razy w miesiącu. Podczas badań rejestrowano położenie gałek ocznych i punkty fiksacji wzroku. Analizie poddano liczbę obserwacji pionowych znaków drogowych oraz reklam przydrożnych. Zaobserwowano, że badany kierowca pominął 60% znaków oraz 52% reklam. Reklamy odciągnęły uwagę kierowcy od obserwacji obecnego w polu widzenia znaku pionowego w 53%. Reklamy były zwykłe, tablicowe i nie zawierały dużych powierzchni świetlnych.
EN
The article describes research of one person driving a car on a national road. The investigation has been done using a mobile measuring system with a resolution of 30 Hz mounted on the head of the driver. The participant drove about 20.000 km per year, and the test section of the road he drove an average of 2 times per month. During the study position of eyeballs and visual fixation points were recorded. The number of eye fixations on traffic signs and roadside advertising was analyzed. It was observed that the participant ignored 60% marks and 52% advertisings. About 53% of road signs were ignored when they were together with ads in the visual field of view.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
There is a close correlation between retinal vascular status and physical diseases such as eye lesions. Retinal fundus images are an important basis for diagnosing diseases such as diabetes, glaucoma, hypertension, coronary heart disease, etc. Because the thickness of the retinal blood vessels is different, the minimum diameter is only one or two pixels wide, so obtaining accurate measurement results becomes critical and challenging. In this paper, we propose a new method of retinal blood vessel segmentation that is based on a multi-path convolutional neural network, which can be used for computer-based clinical medical image analysis. First, a low-frequency image characterizing the overall characteristics of the retinal blood vessel image and a high-frequency image characterizing the local detailed features are respectively obtained by using a Gaussian low-pass filter and a Gaussian high-pass filter. Then a feature extraction path is constructed for the characteristics of the low- and high-frequency images, respectively. Finally, according to the response results of the low-frequency feature extraction path and the high-frequency feature extraction path, the whole blood vessel perception and local feature information fusion coding are realized, and the final blood vessel segmentation map is obtained. The performance of this method is evaluated and tested by DRIVE and CHASE_DB1. In the experimental results of the DRIVE database, the evaluation indexes accuracy (Acc), sensitivity (SE), and specificity (SP) are 0.9580, 0.8639, and 0.9665, respectively, and the evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9601, 0.8778, and 0.9680, respectively. In addition, the method proposed in this paper could effectively suppress noise, ensure continuity after blood vessel segmentation, and provide a feasible new idea for intelligent visual perception of medical images.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.