Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pomiary atmosferyczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
The effects of air pollution on people, the environment, and the global economy are profound - and often under-recognized. Air pollution is becoming a global problem. Urban areas have dense populations and a high concentration of emission sources: vehicles, buildings, industrial activity, waste, and wastewater. Tackling air pollution is an immediate problem in developing countries, such as North Macedonia, especially in larger urban areas. This paper exploits Recurrent Neural Network (RNN) models with Long Short-Term Memory units to predict the level of PM10 particles in the near future (+3 hours), measured with sensors deployed in different locations in the city of Skopje. Historical air quality measurements data were used to train the models. In order to capture the relation of air pollution and seasonal changes in meteorological conditions, we introduced temperature and humidity data to improve the performance. The accuracy of the models is compared to PM10 concentration forecast using an Autoregressive Integrated Moving Average (ARIMA) model. The obtained results show that specific deep learning models consistently outperform the ARIMA model, particularly when combining meteorological and air pollution historical data. The benefit of the proposed models for reliable predictions of only 0.01 MSE could facilitate preemptive actions to reduce air pollution, such as temporarily shutting main polluters, or issuing warnings so the citizens can go to a safer environment and minimize exposure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.