In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we consider the computational complexity of the following problems: given a DFA or NFA representing a regular language L over a finite alphabet Σ, is the set of all prefixes (resp., suffixes, factors, subwords) of all words of L equal to Σ*? In the case of testing universality for factors of languages, there is a connection to two classic problems: the synchronizing words problem of Černy, and Restivo's conjecture on the minimal uncompletable word.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.